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� Integrated control algorithms were developed for the heating system and surface openings.
� AI theories were applied to the control algorithms.
� ANN, FL, and ANFIS were the applied AI theories.
� Comparative performance tests were conducted using computer simulation.
� AI algorithms presented superior temperature environment.
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a b s t r a c t

This study aimed at developing artificial-intelligence-(AI)-theory-based optimal control algorithms for
improving the indoor temperature conditions and heating energy efficiency of the double-skin buildings.
For this, one conventional rule-based and four AI-based algorithms were developed, including artificial
neural network (ANN), fuzzy logic (FL), and adaptive neuro fuzzy inference systems (ANFIS), for oper-
ating the surface openings of the double skin and the heating system. A numerical computer simulation
method incorporating the matrix laboratory (MATLAB) and the transient systems simulation (TRNSYS)
software was used for the comparative performance tests. The analysis results revealed that advanced
thermal-environment comfort and stability can be provided by the AI-based algorithms. In particular, the
FL and ANFIS algorithms were superior to the ANN algorithm in terms of providing better thermal
conditions. The ANN-based algorithm, however, proved its potential to be the most energy-efficient and
stable strategy among the four AI-based algorithms. It can be concluded that the optimal algorithm can
be differently determined according to the major focus of the strategy. If comfortable thermal condition
is the principal interest, then the FL or ANFIS algorithm could be the proper solution, and if energy saving
for space heating and system operation stability is the main concerns, then the ANN-based algorithm
may be applicable.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The artificial-intelligence-(AI)-based control strategy has been
increasingly proposed for creating advanced building environ-
mental quality. As AI theories are applied in the control process, the
building indoor environmental quality is controlled in predictive
and adaptive ways for improved environment and energy effi-
ciency. Artificial neural network (ANN), fuzzy, and adaptive neuro
8

fuzzy inference system (ANFIS) are the representative theories that
are successfully employed for advanced building controls [1e3].

Employing the input, hidden, and output neurons in the
respective layers and the connectivity and transfer functions be-
tween them, ANN can produce the optimal output for advanced
building controls. Its prediction results were proven to be more
accurate than those of mathematical models like the proportional-
integral-derivative (PID) controllers, or of regression models. In
addition, the adaptability via a self-tuning process supports the
stability of the model without external expert intervention for the
retuning model parameters [4,5].

ANNmodels were developed for predicting the optimal stop and
start moments of the heating and cooling systems. Employing these
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Nomenclature

TEMPIN Indoor air temperature, �C
DTEMPIN Indoor air temperature change from the preceding

control cycle, �C
TEMPCAV Cavity air temperature, �C
TEMPOUT Outdoor air temperature, �C
TEMPPR Indoor temperature predicted by the ANNmodel, �C
INPUTACT Actual input value
INPUTMINMinimum input value
INPUTMAX Maximum input value
U Heating system operating ratio, unitless
UNEW U of the current cycle, unitless
UOLD U of the previous cycle, unitless
UTRN U for the new training dataset, unitless
E Difference between the current air temperature and

the set point temperature, �C
DE Change in E from the previous cycle, �C
TH Set point temperature for the heating system, �C
TNEW Temperature in the current control cycle, �C
ni Number of input neurons
nh Number of hidden neurons
no Number of output neurons
nd Number of datasets

Table 1
Five control algorithms with different theories.

Applied theories

For heating system For surface openings

1st algorithm Rule ANN
2nd algorithm ANN ANN
3rd algorithm FL ANN
4th algorithm ANFIS with 2 inputs ANN
5th algorithm ANFIS with 1 input ANN
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calculated values, the ANN-based models created a more
comfortable and energy-efficient indoor thermal environment
[6e8]. The applicability of the ANN model was presented for the
hydronic heating systems of solar buildings with significant energy
savings [9,10]. In addition, the ANN-based control methods effec-
tively controlled the HVAC systems and the radiant water heating
systems that have a significant time lag [11e14].

Using the degree of truth or falsity of phenomena, fuzzy logic
(FL) has been successfully applied in building environment controls
based on their benefit of not requiring precise and noise-free input
data for proposing the control signals [15].

A fuzzy model that employed two inputs d (i) the difference
between the current temperature and the set point temperature
(E); and (ii) the difference between the current E and the previous E
(DE) d created a better output for operating HVAC systems
compared to the proportionaleintegral (PI) or PID controllers [16].
In addition, a fuzzy-based PMV control strategy provided more
comfortable PMV conditions as well as temperature and humidity
conditions in a highly energy-efficient manner [17e19]. More
recently, a radiant heating system in a residential building was
successfully controlled by FL incorporated with the ANN model
[20]. Moreover, FL was applied to condition the whole-building
environment, such as the thermal, lighting, and air quality [21,22].

In order to overcome the difficulty of FL for finding optimized
rules and membership functions, ANFIS can be applied to building
environmental controls. ANFIS, a neuro-fuzzy theory, adopts FL and
ANN in an incorporative manner for developing a globally appli-
cable control method. As with FL, ANFIS employs a series of inputs
and membership functions to produce an output. In addition, the
membership functions are iteratively updated to produce a more
accurate output using output errors, which is similarly conducted in
the ANN model. This iterative tuning process supports the ANFIS
model to optimally respond to the given systems and buildings
[1,2].

In the previous study, the ANN and ANFIS models were
comparatively tested for controlling evaporative condensers. In this
study, the ANFIS models showed slightly superior results in terms
of predicting condenser performance [23]. In other studies, the
ANFIS model successfully operated the damper gap rate and fan
speed in the HVAC system for faster, simpler, and more efficient
temperature and humidity control [24,25]. In addition, in the
comparative tests of ANN, FL, and ANFIS, the ANFIS-based model
controlled the indoor temperaturemore comfortably and stably [3].

For the creation of a comfortable and energy-efficient indoor
thermal environment for double-skin buildings, an AI-based con-
trol strategy was proposed in the previous studies [26e30]. The
openings of the internal and external surfaces of the double skin
and the heating system were operated in an integrative manner
based on the prediction results from two ANN models. One model
predicted the optimal opening strategy for keeping the indoor
space comfortable, and the other model calculated the accurate
operating ratio of the heating system. Compared to the conven-
tional rule-based control method, the thermally comfortable period
was remarkably increased with temperature stability when the
ANNmodels were used for controlling the thermal condition of the
double-skin building. On the other hand, energy efficiency for
heating was not clearly demonstrated, resulting in a similar or
lower efficiency.

Based on the findings of the previous studies, this study aimed
at investigating the diverse AI-theories-based optimal control
strategies for improving the thermal conditions and heating energy
saving effect of double-skin buildings. Besides the ANN models
proposed in the previous studies, FL and ANFIS were applied in the
control algorithms, and their performances were comparatively
analyzed. The comparison results would clearly show the optimal
control strategy in terms of indoor thermal conditions and heating
energy efficiency.

2. Development of the control algorithms

Algorithms for the integrative control of the heating system and
the surface openings were developed. In the previous studies
[29,30], the ANN-based surface control algorithm proved its supe-
riority for the advanced thermal environment; thus, the ANN
model was applied for surface opening control in the new algo-
rithms in this study. On the other hand, FL and ANFIS models were
applied for the control of the heating system. In particular, two
ANFIS models with two input variables and one input variable,
respectively, were developed and tested. Thus, performance anal-
ysis was conducted for five control algorithms, as summarized in
Table 1. The algorithmswere developed using thematrix laboratory
(MATLAB) software and its relevant toolboxes, such as the neural
network toolbox and the fuzzy logic toolbox [31].

2.1. Rules for the heating system and ANN for surface openings (1st
algorithm)

The first algorithm, which employs a specific rule for operating
the heating system and the ANN model for operating openings, is
shown in Fig. 1. In a specific rule for deciding the heating system
operation, the current operating condition, current temperature



Fig. 1. Flow of the 1st algorithm.
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(TEMPIN), and operating range of the heating system were used as
determinants. For example, if the heating system is currently
working and the TEMPIN is over the upper limit of the heating
range, the rule turns off the heating system.

For optimally operating surface openings, four ANN models
were developed for predicting the future indoor temperature
Fig. 2. ANN model for
(TEMPPR). Each ANN model calculates the TEMPPR for the four
opening cases: (i) the openings on both surfaces are closed; (ii) the
internal openings are closed and the external openings are open;
(iii) the internal openings are open and the external openings are
closed; and (iv) the openings on both surfaces are open. Based on
the comparison of the predicted values, the optimal opening
surface openings.



Table 2
Training parameters of the ANN model for the surface openings.

Training methods [29] � Algorithm: LevenbergeMarquardt
� Learning rate: 0.75
� Moment 0.30
� Training goals:0.01 K2 for air temperature (MSE)
� Epoch: 1000 times
� Number of data sets: 85

Training data management technique [29,33,34] A sliding-window method
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strategy is determined, and the surface openings will follow the
determined strategy. For example, if the TEMPPR values
are þ2.0, �1.5, þ1.5, and �2.5 �C, respectively, for the four cases,
then the optimal opening strategy is the 1st case, where the
openings of both surfaces are closed.

The structure of the ANNmodels for predicting TEMPPR is shown
in Fig. 2. One input layer, 10 hidden neurons in the four hidden
layers, and one output layer comprise the ANNmodel, in which the
number of hidden neurons and layers were optimally derived in
previous studies [26,29,30].
Fig. 3. Flow of the 2nd, 4th, and 5th algorithms.
The components of the input neurons were deeply related to the
conductive and convective heat transfer process between the in-
door and outdoor spaces. The actual values of the input compo-
nents were �10e40 �C for TEMPIN, �10e10 �C for DTEMPIN,
�20e40 �C for TEMPCAV, and �20e80 �C for TEMPOUT, 0 (closed)
and 1 (open) for the surface opening conditions. Using Equation (1),
the first four input values were normalized to have a number be-
tween 0 and 1. The tangent sigmoid and pure linear methods,
which are commonly applied in backpropagation multilayer net-
works, were employed as the transfer functions for the hidden and
output neurons, respectively [26,29,30].

INPUT¼ ðINPUTACT � INPUTMINÞ=ðINPUTMAX � INPUTMINÞ (1)

The parameters for the iterative training of the ANN models are
summarized in Table 2. The LevenbergeMarquardt algorithm was
used for training with a 0.75 learning rate and a 0.30 moment,
which were found to be the optimal values in the previous study
[29]. The training goal and epoch that were assigned were 0.01 K2

for the air temperature, and 1000 times. Based on Equation (2) [29],
85 datasets were obtained from the computer simulation using
MATLAB and TRNSYS [32], which will be explained in section 3. In
addition, a sliding-window technique was used for the training
dataset management; thus, the oldest dataset was removed when
the new datasets were acquired [29,33,34].

nd ¼ ðnh � ðni þ noÞ=2Þ2 (2)
2.2. ANNs for the heating system and surface openings (2nd
algorithm)

The second algorithm employed ANN models for controlling
both the heating system and the surface openings, as shown in
Fig. 3. The first ANN model calculated the operating ratio of the
heating system, and the second ANN model was used to find the
thermally optimal opening strategy identical to that in the first
algorithm.

The first ANN model, which was designed to calculate the
operating ratio (U), presented a continuous-basis ratio between
0 and 1 for operating the heating system. The structure of the ANN
Fig. 4. ANN model for heating system [3,29].



Table 3
Training parameters of the ANN model for the heating system.

Training methods [35] � Algorithm: LevenbergeMarquardt
� Learning rate: 0.75
� Moment 0.90
� Training goals:0.00 K2 for U (MSE)
� Epoch: 1000 times
� Number of data sets: 25

Training data management technique [32,35] A sliding-window method
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model is shown in Fig. 4. One input layer, a hidden layer, and an
output layer comprised it. In the input layer, two neurons (E and
DE) were employed, respectively, representing the difference be-
tween the indoor air temperature and the set point temperature,
and the changing amount of E from the previous cycle. The number
of neurons in the hidden layer was determined as five based on
Equation (3) [29]. The tangent sigmoid and pure linear transfer
functions were applied for the hidden and output neurons,
respectively.

nh ¼ 2� ni þ 1 (3)

The parameters for the training model are summarized in
Table 3. As with the model for the surface openings, the Lev-
enbergeMarquardt algorithm was applied with a 0.75 learning
rate, a 0.90 moment, a 0.00 K2 goal, and a 1000 times epoch, based
on the findings of the previous study for the optimal calculation [3].
Using the previously mentioned Equation (2), 25 datasets were
prepared for training the ANN model. In addition, the sliding-
window method was applied for data management. The process
for training the ANN model and for calculating the U of the heating
system is summarized in Table 4.
Fig. 5. Flow of the 3rd algorithm.
2.3. FL for the heating system and ANN for surface openings (3rd
algorithm)

The third algorithm employed an FL model for controlling the
heating system, and ANN models for operating the surface open-
ings, as shown in Fig. 5. The ANN models employed for the surface
openings were identical to those that were used in the first algo-
rithm. Thus, the same process was carried out for optimally oper-
ating the surface openings.

The FL model, which was developed for the heating system,
employed two input variables d (i) the difference between the air
temperature and the set point temperature (E); and (ii) the change
in E from the previous cycle (DE) for calculating the heating system
operating ratio (U). Themembership functions shown in Fig. 6 were
tuned for calculating the optimal output in the previous study [3].
Table 4
Process for training ANN model and calculating U.

Processes Descriptions

(1) Find UTRN Using equation
UTRN ¼ UOLD þ UOLD*(TH � TNEW)

(2) Find EOLD and DEOLD Using the TEMPIN of the previous cycle

(3) Add EOLD, DEOLD, and UTRN in the
new training datasets

Using the sliding-window data manage
set is added to the training datasets, re

(4) Train the ANN model Using the new training datasets
(5) Calculate UNEW for the current cycle Using the trained ANN model
Trapezoidal and triangular shapes were employed for the mem-
bership functions, with ranges between �2.0 and 2.0 �C for E, �2.0
and 2.0 �C for DE, and �1.0 and 1.0 for U. As the range of U was set
between �1.0 and 1.0, the values derived from this range were
designed to be converged to �1.0 and 1.0. The fuzzy ifethen rules
are summarized in Table 5.
Examples

When the set-point temperature is 21.5 �C, TEMPIN
is 21.2 �C, and U of the heating device during the
previous cycle is 0.3, then UTRN is determined to
be 0.39. This means that U of the previous cycle
should have been 0.30 in the previous cycle.

and of the two cycles If TEMPIN of the previous cycle and of the two
cycles before it are 20 �C and 19.9 �C,
respectively, then EOLD is �1.5 �C (20e21.5 �C)
and DEOLD is 0.1 �C ((20�e21.5 �C)e(19.9e21.5 �C)).

ment technique, the new
placing the oldest.

e

e

e



Fig. 6. (a) Membership function plots of E (1st input), (b) membership function plots of
DE (2nd input), (c) membership function plots of U (output).

Table 6
Ifethen rules and functions of ANFIS with 2 input variables [3].

Inputs (if) Outputs (then)

E DE U

Cold And Colder Output membership function 1
Cold And Hotter Output membership function 2
Comfortable And Colder Output membership function 3
Comfortable And Hotter Output membership function 4
Hot And Colder Output membership function 5
Hot And Hotter Output membership function 6
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2.4. ANFIS for the heating system and ANN for the surface openings
(4th and 5th algorithms)

The fourth and fifth algorithms, which are identical to the sec-
ond logic shown in Fig. 3, employed an ANFIS model with different
Table 5
Fuzzy ifethen rules [3].

Inputs (if)

E

Cold And
Cold And
Comfortable And
Comfortable And
Hot And
Hot And
input variables for controlling the heating system, and ANNmodels
for operating the surface openings. As with other algorithms, the
surface opening conditions were determined by the ANN models.

Two Sugeno-type ANFIS models with two inputs (E and DE) and
one input (E), respectively, were applied to the fourth and fifth
algorithms, respectively. Each model produced a variable output U
for the heating system. The applied output membership functions
and rules are summarized in Tables 6 and 7.

The iterative training process, which was identical to the ANN
model in the second algorithm (Table 4), was carried out for
adjusting the parameters of the output membership functions.
Thus, the model can produce the optimal output (U) for the
changing environment. Similar to the ANNmodel, training datasets
that added new input and output sets were used for the training.
For the training process, most of the parameters of the training
model followed the recommended values in the fuzzy logic toolbox
of MATLAB. Thus, 30 epochs, 0.0 error tolerance, a 0.01 initial step
size, a 0.9 step size decrease rate, a 1.1 step size increase rate, the
back-propagation training method, and 40 training datasets were
employed [3,31].

3. Performance tests

The performances of the five algorithms were comparatively
tested to investigate the algorithms' influence on the indoor ther-
mal conditions and building energy efficiency. A one-story test
building with a double skin was modeled for the numerical simu-
lation, as shown in Fig. 7. The building was 4.2 mwide, 4.5 m deep,
and 3.05 m high, and it was covered with south-facing double-skin
envelopes. The cavity depth was 0.9 m, with an air inlet and an air
outlet at the top and bottom on both the internal and external
envelopes. Each opening was 0.3 m high and 0.5 m wide.

The thermal resistance values (R-value) of the roof, walls, floor,
and internal and external glazings were 5.00, 2.78, 2.44, 0.77, and
0.18 m2K/W, respectively. The internal load consisted of two seated
occupants carrying out light office tasks, two computers with
printers, and 5 W/m2 lighting fixtures. Convective heat transfer
occurred through ventilation and infiltration with 0.7 ACH (air
change rate per hour). No shading devices and external obstruc-
tions were considered around the test building. For space heating, a
radiative heating systemwith a 7172 kJ/h heat supply capacity was
installed. The TMY2 weather data were employed for Seoul, South
Korea (latitude: 37.56�N; longitude: 126.98�E). The performance
Outputs (then)

DE U

Colder Heating
Hotter Heating
Colder Heating
Hotter Cooling
Colder Cooling
Hotter Cooling



Table 7
Ifethen rules and functions of ANFIS with 1 input variable [3].

Input (if) Outputs (then)

E U

Cold Output membership function 1
Comfortable Output membership function 2
Hot Output membership function 3

Table 8
Employed TRNSYS components and roles.

Components Roles

Type 9c Reading the TMY2 weather file
Type 16a Calculating the amount of solar radiation

on the test building surface
Type 69b Calculating the sky temperature
Type 33e Calculating the outdoor dew-point

temperature
Type 56a-TRNFlow Calculating the indoor temperature of the

test building
Type 155 Connecting the MATLAB and ANN models
Type 65d-2 Producing the output file
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tests for the five algorithms were conducted for the heating season
from January 1 to March 31.

The performance tests were conducted using the TRNSYS [32]
and MATLAB [31] software in an incorporative manner, as shown
in Fig. 8. The TRNSYS components that were employed for the
simulation are summarized, along with their roles, in Table 8. In
particular, the type 155 component linked the MATLAB-based
control algorithm to the TRNSYS model.

The validity of the simulation method was proven in previous
studies [33,36], in which the indoor temperature collected from an
actual building was statistically compared with the simulated in-
door temperature calculated by the simulation model. The analysis
results showed a significant relationship between the collected
and simulated values; thus, the validity of the simulation method
for testing the performances of diverse control algorithms was
proven.
Fig. 7. Test building, (a) section, (b) fron

Fig. 8. Composition of the
4. Results analysis

4.1. Profile of temperature and system operation

The operation profile of the surface openings and the heating
system as well as the indoor, outdoor, and cavity temperature
conditions for the five algorithms for the sample period of January
1e10 are shown in Fig. 9. The cavity temperature of the double skin
was conditioned between the indoor and outdoor temperatures. In
particular, the temperature in the cavity space was significantly
higher than the outdoor air temperature during the day, when the
solar radiation caused the cavity air to rise.
t elevation, (c) plan, unit: mm [37].

simulation model [37].



Fig. 9. Profile of temperature and system operation: (a) RuleeANN; (b) ANNeANN; (c) FLeANN; (d) ANFIS with 2 inputseANN; and (e) ANFIS with 1 inputeANN.
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The openings of the internal surface were closed by all the al-
gorithms for the whole sample period. This was due to the pre-
diction results of the ANN-based algorithm that determined the
closing of the internal surface openings as an optimal method for
controlling the indoor temperature conditions. During the whole
test period, the openings of the external surface were set to be
closed for blocking the outdoor air to the cavity space.

The rule-based heating system control method (1st algorithm)
repeatedly turned the heating system on and off, following the
designed two-position rule, as shown in Fig. 9(a). As a result, the
indoor temperature fluctuated between the maximum and mini-
mum values of the operating range (20e23 �C). On the other hand,
the four other algorithms, which employed a variable heating
system and AI theories for finding the optimal operation ratio (U),
changed the operating ratio from 0 to 1. Therefore, the indoor
temperature was closely maintained around the center of the
operating range (21.5 �C), with less fluctuation (Fig. 9bee). In
particular, the second algorithm, which employed the ANN model
for variable heating system control, operated the heating system
with the least changing ratio; thus, the small-scale fluctuation of
the indoor temperature was reduced.

4.2. Indoor temperature conditions

The indoor temperature condition results of the five algorithms
are summarized in Table 9. The indoor temperature was condi-
tioned slightly higher when the AI theories were applied to the
control algorithm. The differences with the rule-based heating
system control algorithmwere 0.43, 0.27, and 0.30 �C for the ANN-,
FL-, and two-ANFIS-based algorithms, respectively. This was due to
the variable controls of the heating system using the calculated
operation ratio U. Similar to the indoor temperature, the cavity air
temperature slightly rose when the AI-based algorithms were
applied, due to the increased heat transfer from the indoor space
with a higher temperature.

The standard deviation (SD) values of the indoor temperature
from the center (21.5 �C) of the operating range (20e23 �C), and
the average temperature, were significantly reduced when the AI
theories were applied in the control algorithm. Compared to the
rule-based algorithm, the reduction percentage was 13.28, 42.19,
39.06, and 39.83% when the SD was calculated using the center of
the operating range, and 15.58, 72.74, 40.50, and 41.43%, respec-
tively, for the four AI-based algorithms. This means that the air
temperature created by the AI models was better stabilized even
though small-scale fluctuation occurred iteratively at around
21.5 �C.

The period of comfortable temperature condition was also
significantly increased when the FL and ANFIS models were
applied. Compared to the rule-based algorithm, the amount of in-
crease was as much as 2.92, 2.61, and 2.73% for FL, ANFIS with two
inputs, and ANFIS with one input, respectively. In particular, no cold
Table 9
Indoor temperature conditions created by the five algorithms.

Algorithms

ANNeRule AN

Temperature (�C) Average Indoor 21.53 21
Cavity 6.67 6

Standard deviation From 21.5 �C 1.284 1
From the average
temperature

1.284 1

Thermal
environment (%)

Cold 2.90 0
Comfortable 85.85 83
Hot 11.25 15
period occurred when FL or ANFIS was used for calculating the
optimal operating ratio (U).

On the other hand, the period over the comfortable range was
increased when the U was calculated by the ANN model. For much
of the hot period, the U for the heating systemwas calculated to be
close to 0 by the ANN model. Thus, the uncomfortably hot condi-
tions were not caused by the heating system operation but by the
thermal inertia of the indoor space. For a similar reason, the ANN-
based heating system control algorithm significantly reduced the
cold period compared to the rule-based algorithms.

4.3. Heating system operation

The heating system operation results of the five algorithms
from January 1 to March 31 are summarized in Table 10. The AI-
theory-based algorithms presented the possibility of consuming
more energy for space heating. Compared to rule-based heating
system control, the AI algorithms supplied a greater amount of
heat to the indoor space. The increase amounts were 3.97, 8.42,
11.48, and 16.45% for the algorithms from the 2nd to the 5th. This
has a connection to the fact that the AI-based heating system
control methods keep the indoor temperature higher than that of
the rule-based method. Similarly, the average heating system
operating ratio (U) was greater when the four AI theories were
applied.

The changing ratio of U was significantly reduced, however,
when the AI theories were applied. The SDs from the average ratio
and 0.5, which is half of the heating capacity, all decreased. This
means that the heating systemworked stably, with less fluctuation.
In particular, the ANN-based algorithm reduced the SD from the
average and 0.5 by as much as 80.34 and 56.00%, respectively,
compared to the rule-based algorithm. Thus, the ANN model
showed the potential of operating the heating system most stably.

In addition, the ANN and FL models reduced the number of on/
off moments of the heating system compared to the rule-based
method. The reduced number reached 14,864 and 222, respec-
tively. The ANN-based algorithm significantly reduced the on/off
moments, meaning the stability of the system operation. The
reduced on/off moments can in the long run reduce the system
degradation caused by the iterative and frequent turning on/off of
the system.

From the analysis of the indoor temperature conditions and the
heating system operation, it was revealed that the AI-based algo-
rithms increased the overall indoor temperature and the comfort-
able period in most cases, except the 2nd algorithm, which
employed an ANN model for operating the heating system. In this
case, the thermal inertia was the major reason for the increase in
the hot period, over the comfortable range. In addition, the ANN-
based heating system control algorithm proved its potential to be
the most energy-efficient and stable strategy among the four AI-
based algorithms.
NeANN ANNeFL ANNeANFIS with 2 inputs ANNeANFIS with 1 input

.95 21.80 21.83 21.83

.71 6.70 6.70 6.70

.108 0.741 0.781 0.769

.084 0.350 0.764 0.752

.88 0.00 0.00 0.00

.68 88.77 88.46 88.58

.44 11.23 11.54 11.42



Table 10
System operation by five algorithms.

Algorithms

ANNeRule ANNeANN ANNeFL ANNeANFIS with 2 inputs ANNeANFIS with 1 input

Amount of heat supply (kWh) 1537.28 1598.31 1666.68 1713.85 1790.17
Operating ratio (U) Average 0.214 0.222 0.231 0.238 0.249

Standard of deviation from the average 0.168 0.033 0.048 0.082 0.101
Standard of deviation from 0.5 0.250 0.110 0.121 0.151 0.163

Number of heating system on/off (times) 15,046 182 14,824 34,032 35,922
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5. Conclusions

The aim of this study was to develop AI-based optimal control
strategies for providing comfortable indoor temperature conditions
and for saving heating energy of double-skin buildings. One con-
ventional rule-based algorithm as a base-case and four AI-based
algorithms were developed, including ANN, FL, ANFIS with two
inputs, and ANFIS with one input. Using a numerical computer
simulation method incorporating the MATLAB and TRNSYS,
comparative performance tests were conducted. Results analysis
was conducted for the profile of the temperature and system
operation, indoor temperature conditions, and heating system
operation. The findings are summarized below.

(1) The indoor temperature was conditioned slightly higher
when the AI theories were applied to the control algorithm,
due to the variable control of the heating system using the
calculated operation ratio (U).

(2) The period of comfortable temperature condition was
significantly increased when the FL and ANFIS models were
applied. In particular, no cold period occurred when FL or
ANFIS was used for calculating the optimal operating ratio
(U).

(3) The hot period, over the comfortable range, was increased
when the ANN model was used for calculating U. This,
however, was caused by the thermal inertia of the indoor
space. The ANN-based heating system control algorithm
significantly reduced the cold period compared to the rule-
based algorithms, for a similar reason.

(4) The standard deviation (SD) values of the indoor tempera-
ture were significantly reduced when the AI theories were
applied in the control algorithm. This supports the stability of
the indoor temperature with the AI-based control method.

(5) The AI-theory-based algorithms suppliedmore heat from the
indoor space compared to the rule-based heating system
control algorithm. Similarly, the average U of the heating
system was greater when the AI theories were applied.

(6) The changing ratio of U was significantly reduced, however,
when the AI theories were applied, with lower SD values.
This finding supports the stability of the system operation. In
particular, the ANN-based algorithm reduced the SD most
significantly.

(7) In addition, the ANN-based algorithm significantly reduced
the on/off moments, meaning the stability of the system
operation. The reduced on/off moments can in the long run
reduce the system degradation caused by the iterative and
frequent turning on/off of the system.

The analysis results revealed that the advanced comfort and
stability of the thermal environment can be provided by the AI-
based algorithms. In particular, the FL and ANFIS algorithms were
superior to the ANN algorithm in terms of providing better thermal
conditions with the increased comfortable period and the
decreased SD values, but the ANN-based heating system control
algorithm proved its potential to be the most energy-efficient and
stable strategy with the smaller amount of heat supply and the
decreased number of on/off of the heating system among the four
AI-based algorithms.

The findings in this study showed similar analysis results for the
thermal conditions with the previous study in which three AI-
based control logics e ANN, FL, and ANFIS were compared their
performance [3]. In the previous study, the comfortable period over
the lower limit of the designated comfortable range was most
successfully provided by the ANFIS logic followed by FL and ANN,
which is identical result with this study. However, compared to the
findings in the previous study, in which the amount of heat supply
was very similar by three AI-based logics, the ANN-based algorithm
in this study showed superiority over the other three AI-based
algorithms.

Based on the findings in this study and the comparisons with
the previous study, it can be concluded that the optimal algorithm
can be differently determined based on the major focus of the
control strategy. If comfortable thermal condition is the principal
interest, then FL or ANFIS could be the proper solution, and if en-
ergy saving for the space heating and stability of the system
operation are the main concerns, then ANN may be applicable.
However, further study is warranted for the deeper investigation on
the energy saving effect of the algorithms.

This study was conducted for proposing a diverse AI-based al-
gorithm for the heating season. Further study is required for
developing an algorithm for the cooling and interim seasons. In
addition, a comprehensive algorithm that consolidates diverse
seasonal algorithms needs to be developed. In the future study, the
actual data after application to the real building should be acquired
and analyzed to support the validity of the proposed algorithm.
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