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Influence of control logic on
variation of indoor thermal
environment for residential buildings

Jin Woo Moon1, Ji–Hyun Lee2 and Sooyoung Kim3

Abstract
This study proposes an advanced thermal control method that employs artificial neural network (ANN)
models for predictive and adaptive thermal control. Two predictive and adaptive control logic
approaches were proposed to simultaneously control indoor temperature and humidity as well as
predicted mean vote (PMV) in a residential building. Their thermal performance was analysed and
compared with that of non-ANN-based counterparts to evaluate architectural variables such as enve-
lope insulation and building orientation. A numerical computer simulation method was used for the
tests after demonstration of its validity based on comparison with results of field measurement.
Analysis results revealed that the proposed predictive and adaptive control methods conditioned the
indoor temperature, humidity and PMV effectively. The periods during which each thermal factor was
in a comfortable range increased, and overshoots and undershoots out of the targeted comfortable
ranges were reduced when using the ANN model. The results demonstrate the functionality of the
proposed method for variation in architectural variables and that the ANN model has the potential to be
successfully applied to building thermal controls.
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Introduction

Indoor thermal environments of residential buildings
are typically controlled by simple methods such as
thermostats. Thermostat control systems, which use
current temperature and user-specified set-point tem-
perature for heating and cooling systems, have been
widely applied to the control of indoor temperature
conditions. In general, a thermostat controls heating
and cooling systems based on on–off control settings,
under which heat is provided to an indoor space or
removed from an indoor environment.

However, with an increased awareness of quality of
life concerns, comfort and health issues regarding
indoor environments have become important factors
that should be considered more prudently.1 Indoor
environmental quality needs to be precisely and syn-
thetically controlled to satisfy user demands for better
conditions of indoor thermal environments.

As a result of new thermal requirements in buildings,
residential thermal control strategies are changing from
conventional methods to a new method, as shown in
Figure 1. The conventional control strategy is inde-
pendent, static and inflexible, whereas the new control
strategy is integrated, dynamic and flexible.

First, instead of independent control of the heating,
cooling, humidifying, and dehumidifying systems,
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the new control strategy employs integrated systems
and logic using interoperable protocols. Second, in
order to improve static features in the conventional
method, the new thermal control strategy employs
dynamically changing thermal factors in the control
algorithm and responds interactively to user interven-
tion. Finally, the new strategy flexibly controls the ther-
mal environment using the information and
communication technology of wired or wireless
approaches. Access to the control domain is possible
for multiple users from multiple locations.2

A good control strategy that meets requirements for
the new control method is the artificial neural network
(ANN), which is analogous to the human neural structure
and its learning process.3 ANN-based control has been
applied to thermal controls for buildings because of its
outstanding predictability and adaptability.4–16 Thermal
control strategies using ANN models are superior to con-
ventional mathematical methods such as regression
models or proportional–integral–derivative methods.

In previous studies, the ANN-based control method
provided more comfortable and stable temperature
conditions with improved energy efficiency for heating
and cooling systems.4–10 In particular, predictive con-
trol methods exhibited outstanding performance when
used to operate thermal control devices that had a long
time lag, such as radiant water heating systems.11–13

In other studies, ANN-based thermal control logic
for residential buildings was applied to determine the
optimal control of heating, cooling, humidifying and
dehumidifying devices.14,15 The performance of the
ANN-based temperature, humidity and predicted
mean vote (PMV) control methods was compared
with that of non-ANN counterparts. Results of these
analyses indicated that ANN-based predictive control
could control temperature, humidity and PMV more
stably within comfortable ranges. In addition, the

ANN-based control logic showed a significant energy
saving effect for the heating, ventilation and air-
conditioning (HVAC) systems.16

The proposed ANN-based control methods are
expected to meet new requirements for residential ther-
mal controls. Since ANN-based control logic can be
embedded in an integrated control system framework
using a microcontroller, the data acquired by sensors
regarding dynamically variable factors can be con-
sidered in the control logic. Optimal output signals
for the thermal control devices, which are calculated
by the ANN model, will provide more comfortable
and stable thermal conditions. In addition, this control
logic can be freely accessed by multiple users from mul-
tiple locations using communication networks in order
to satisfy their various thermal requirements.

In previous studies, the performance of ANN-based
thermal control methods was tested using variables
such as user requirements (application of setback and
change of set-point temperature for thermal control
devices) and disturbances (variation in infiltration
rate, internal loads, and climate conditions).14,15

However, the proposed ANN-based thermal control
methods still have to be fully tested in a range of build-
ings. This study proposes and tests ANN-based predict-
ive and adaptive thermal control methods for
residential buildings in four research phases.

First, ANN-based predictive thermal control meth-
ods were developed to control indoor thermal condi-
tions including air temperature, humidity and PMV.
Second, measurements were completed in a mock-up
chamber space and the measured data were compared
with numerically simulated data to demonstrate the
validity of the numerical simulation method.

Third, after validity tests of the numerical simulation
method, the prediction accuracy of the developed ANN
model was analysed using comparison between values
predicted by the ANN model and simulated values.
Finally, thermal performance of the proposed ANN-
based control methods and conventional non-ANN-
based control methods was tested for architectural vari-
ables such as variation in envelope insulation and
orientation of the building. The thermal conditions
for the proposed and conventional methods were ana-
lysed in terms of comfortable periods and magnitudes
of overshoot and undershoot.

Development of ANN-based thermal
control logic and ANN models

Two methods of ANN-based control logic and two
methods of non-ANN-based control logic were devel-
oped in this study to examine the influence of control
logic on indoor thermal environment. The control logic
approaches are (i) temperature and humidity control

Figure 1. Changing trends in residential thermal controls.2
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with ANN, (ii) PMV control with ANN, (iii) tempera-
ture and humidity control without ANN and (iv) PMV
control without ANN.

Figures 2–4 show the algorithms that employ the
ANN model for control of temperature, humidity
and PMV. The ANN models in each algorithm predict

Figure 2. ANN-based temperature control logic.

Figure 3. ANN-based humidity control logic.
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the amount of overshoot or undershoot for tempera-
ture (TEMPPRE), humidity (HUMIDPRE) and PMV
(PMVPRE), which refers to the maximum amount of
increase or decrease, respectively, when the operating
mode of the control device is changed. For example, in
winter, TEMPPRE is the maximum rise in temperature
after the heating device is turned off. These predicted
values were used with the current conditions, such as
temperature (TEMPIN), humidity (HUMIDIN) and
PMV (PMVIN) to operate thermal control devices.

Because of its predictive approach, the control logic
effectively stabilises thermal factors within designated
ranges. Figure 5 conceptually shows the indoor tem-
perature profile when the predicted values were used
in the control logic. The operation of cooling and heat-
ing devices is predetermined for the given operating
ranges.

Three ANN models were developed to predict over-
shoot or undershoot of temperature (TEMPPRE,

�C),
humidity (HUMIDPRE, %) and PMV (PMVPRE) in

Figure 4. ANN-based PMV control logic.

Figure 5. Indoor temperature profile by ANN-based temperature control logic.
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residential buildings. Two ANN models for predicting
TEMPPRE and humidity HUMIDPRE were used in tem-
perature and humidity control logic with ANN, and the
last ANN model for predicting PMVPRE was employed
in PMV control logic with ANN. Since the occupants’
activity level (MET) and clothing level (CLO) were
used for calculating PMV, the PMV-based logic is
expected to satisfy the individual’s thermal requirement
more concisely and dynamically. For testing perform-
ance of the logic, specific values for MET and CLO
were applied.

Each ANN model consists of one input layer, one
hidden layer and one output layer. The input layer is
composed of eight neurons, indoor air temperature
(TEMPIN,

�C), indoor air temperature change
(�TEMPIN,

�C), outdoor air temperature
(TEMPOUT,

�C), outdoor air temperature change
(�TEMPOUT,

�C), indoor relative humidity
(HUMIDIN, %), indoor relative humidity change
(�HUMIDIN, %), relative humidity (HUMIDOUT,
%), and outdoor relative humidity change
(�HUMIDOUT, %). �TEMPIN and �HUMIDIN rep-
resent the amount of change in the preceding 10min,
and �TEMPOUT and �HUMIDOUT represent the
change in the preceding hour. The ranges of each
input neuron are summarised in Table 1. The input
variables are normalised to have values between 0 and
1 using equation (1).

The number of hidden neurons is 17 based on equa-
tion (2). The output layer employs one neuron that is
the calculation result of the ANN model. Each model
calculates TEMPPRE, HUMIDPRE and PMVPRE,
respectively. Tangent sigmoid and pure linear transfer
functions were, respectively, employed in the hidden
and output neurons.

INPUTACT� INPUTMINð Þ= INPUTMAX� INPUTMINð Þ

ð1Þ

Nh ¼ 2� Ni þ 1 ð2Þ

where INPUTACT is actual input value; INPUTMAX is
maximum input value; INPUTMIN is minimum input
value, Ni is the number of input neurons; and Nh is the
number of hidden neurons.

Values for the learning rate (0.75), moment (0.30),
training goal (0.01 K2 for air temperature) and epoch
(1,000 times) were consistent with values obtained in
the optimisation process in previous studies.4–6 In add-
ition, the Levenberg–Marquardt algorithm was used
for training the ANN model. In total, 75 training
data sets were used for the model training based on
equation (3) and the sliding-window method was
applied to manage the training data.

Nd ¼ Nh � Ni þ Noð Þ=2ð Þ
2

ð3Þ

where Nd is the number of training data sets and No is
the number of output neurons.

Thus, when a new training data set was acquired,
the new data set replaced the oldest set in order to
better reflect the latest conditions in the ANN model.
The time required for the training and prediction using
a standard laptop computer was minimal less than
three seconds at maximum.

As counterparts to the two ANN-based control logics,
two non-ANN-based logics were developed. Those were
temperature and humidity control without ANN, and
PMV control without ANN. They did not employ any
ANN models for predicting overshoot and undershoot of
thermal factors such as temperature, humidity and PMV.
Thus, the operation of the thermal control systems (e.g.,
heating, cooling, humidifying and dehumidifying systems)
was determined, when the thermal factors went out of the
operating range resulting in an increased thermally uncom-
fortable period. These two non-ANN-based logics were
comparatively tested with two ANN-based logics.

Research method

In this study, two major processes were adopted to
effectively compare the performance of the control
methods. The first step was to validate the simulation
software in order to provide reliable grounds for fur-
ther simulations in several thermal situations of build-
ings. The simulation results for a building using
developed control logic were compared with field meas-
urement data monitored from a mock-up chamber,
which was built with thermal properties equal to
those used for the simulations.

Next, computer simulations were performed using
control logic for a variety of building conditions in
order to examine the influence of thermal control
logic on the indoor thermal environments of residential
buildings. ANN-based control logic and non-ANN-
based control logic were used for the simulations.

Table 1. Ranges of input neurons.

Neuron (Ni) Range

i) TEMP �10–40�C

ii) �TEMPIN �10–10�C

iii) TEMPOUT �20–40�C

iv) �TEMPOUT �20–20�C

v) HUMIDIN 0–100%

vi) �HUMIDIN �10–10%

vii) HUMIDOUT 0–100%

viii) �HUMIDOUT �50–50%
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Validation of simulation software

For the validation procedure, field measurements were
conducted in the mock-up chamber shown in Figure 6.
The mock-up chamber was located in a high-bay space
of a university building with a main façade facing south.
The major envelope of the chamber was adjacent to the
south-facing envelope of the university building. The
remaining envelopes of the chamber were exposed to
the indoor environment surrounded by a high-bay space.

Two windows were installed on the east and south
envelopes. The dimensions of the south-facing window
were 2.85m � 0.9m, and the bottom line of the window
was 1.2m from the floor. The dimensions of the east-
facing window were 0.9m� 0.9m, and the bottom line
of the window was 1.1m from the floor. The south-
facing window was covered with rigid insulation
panels to block solar radiation and prevent its effects
on indoor thermal conditions.

The insulation levels for walls were 3.8, 3.6, 1.8, and
0.18 m2K/W for north, east, south and west walls,
respectively. The roof and floor contained 3.6 and 3.7
m2K/W of insulation. The windows installed on south
and east walls had insulation levels of 0.4 m2K/W.
The infiltration rate of the chamber was assumed to
be 1.0 air change rate per hour (ACH).

A thermal control system was installed for data
monitoring and device control. This system included
sensors, a data acquisition system, a control panel
with computer hardware and control logic, and thermal
control devices such as a radiant heater, air conditioner,
humidifier, and dehumidifier. A radiant heating system
with heat capacity of 1500W was installed for heating,
and an air-conditioning unit with 1480Wh was used for
heat removal from the chamber. To control humidity, a
humidifier with a capacity of 0.00047 m3 h�1 of mois-
ture supply and a dehumidifier with a capacity of
0.00069 m3 h�1 of moisture removal were installed.

A variety of sensors were used to measure tempera-
ture, air velocity, humidity and mean radiant tempera-
ture. Their accuracy was within recommended ranges
and no significant deviation of accuracy occurred
during the entire monitoring period. Sensors for moni-
toring indoor air temperature and humidity were pos-
itioned at the centre of the chamber at a height of 1.2m
which is a normal working surface. The dry-bulb tem-
perature, relative humidity, and heating and humidify-
ing device operation were monitored every minute.

The operating range of the heating device was 20 to
23�C based on general guidelines, under which the com-
fortable ranges are 20 to 23.5�C for winter and 23 to
26�C for summer.17 Using the zero-band method,

Figure 6. Layout of mock-up chamber.
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the operating range of the heating system was deter-
mined to not overlap with that of the cooling system.

Simulation results were compared with field meas-
urement results to demonstrate the validity of the pro-
posed control logic. For effective comparison between
measurements and simulations, the measurement con-
ditions of the chamber were identically modelled in the
simulation process using MATLAB (Matrix
Laboratory) and IBPT (International Building Physics
Toolbox).

Numerical performance simulation

After validation test procedures were completed, the
performance of the developed ANN-based thermal
control methods was numerically tested using Matrix
Laboratory (MATLAB) and the International Building
Physics Toolbox (IBPT). MATLAB was developed by
MathWorks for numerical computing and program-
ming, and its neural network toolbox was employed
as the primary method for developing ANN models.18

In this study, MATLAB was used for (1) calculating
indoor PMV, (2) developing ANN models and thermal
control logic, (3) calculating TEMPPRE, HUMIDPRE

and PMVPRE from the developed ANN models and
(4) determining the operation of thermal control
devices using thermal control logic. The decision from
the logic was fed into the IBPT to work the thermal
control devices.

The IBPT was developed at the Chalmers Institute
of Technology, Sweden, and is an energy simulation

software package that can simulate building systems
and performance.1 It was used for (1) modelling build-
ing components and related features (e.g., envelopes,
thermal control devices, initial thermal conditions,
internal loads, infiltration rate and weather data), and
(2) calculating indoor temperature (TEMPIN) and
humidity (HUMIDIN). By adopting the decisions
from MATLAB for the operation of the devices,
IBPT produced a new indoor thermal environment,
which was subsequently transferred to MATLAB.

Computer simulations using control logic were per-
formed for a typical two-storey residential building
under a variety of thermal and weather conditions to
examine the influence of control logic on the indoor
thermal environment. The building was assumed to be
located in Detroit, Michigan, USA (latitude: 42�19?N,
longitude: 83�20?W). The dimensions of the test build-
ing are shown in Figure 7.

Each floor area of the test building was 92.2 m2 and
the total floor area was 184.4 m2. The ratio of window
to exterior wall on the envelope was 8, 14, 24, and 13%
for north-, east-, south- and west-facing walls, respect-
ively. The infiltration rate through the window was
assumed to be 0.7 ACH.

The thermal resistance (R-value) of wall, roof, floor,
windows and door was 3.35, 6.69, 3.70, 0.61, and 0.20
m2K/W, respectively. These values were used for the
boundary conditions of the base case for simulation
in this study. For further simulations, the R-values of
the walls, roof and windows were parametrically chan-
ged to test the developed control logic. Additionally, it
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Figure 7. Layout of a tested residential building.

922 Indoor and Built Environment 25(6)



was assumed that the building faced south for the base
case simulation. Seven additional conditions for build-
ing orientation were applied to further simulations to
examine the influence of building thermal properties on
the performance of the control logic.

For computer simulation, it was assumed that
hourly-weighted heat and moisture gain for a family
of four was applied for internal heat gain. The initial
air temperature and relative humidity were assumed to
be 23�C and 45%, respectively. In addition, mean radi-
ant temperature of the test building was assumed to be
equal to the indoor air temperature and no significant
air movement was considered in the simulation.
The occupants’ activity and clothing levels were
assigned to be 1.0 MET and 1.0 Clo for winter, and
1.0 MET and 0.5 Clo for summer, respectively.

The targeted thermal comfort range for air tempera-
ture, humidity and predicted mean vote (PMV) during
summer was 23–26�C, 45–60%, and 0.0–0.5, respect-
ively. Corresponding values for winter were 20–23�C,
30–45%, and 0.5–0.0, respectively. The comfortable
ranges for air temperature, humidity and PMV were
assigned based on existing recommendations.17

Thermal control devices, such as heating, cooling,
humidifying and dehumidifying systems, were installed
to satisfy the targeted thermal comfort ranges. A con-
vective heating device with a heat capacity of 9000W
and a cooling device with 10,000W of heat removal
were used. For humidity control, a humidifier and
dehumidifier with capacities of 1.41 kg/h and 2.36 kg/
h, respectively, were used. To control PMV, the heating
and humidifying devices worked together to increase
PMV. Similarly, the cooling and dehumidifying devices
worked together to decrease PMV.

The boundary conditions used for simulations are
summarised in Table 2. The insulating level of the
walls, roof and windows was parametrically tested.
When the R-value of one component was changed,
the R-values of the other components were kept

constant as the base case. In addition, when tests
were conducted for diverse orientations, the R-values
of the envelope components were held to be the same as
the base case condition.

The computer simulations for performance tests
were conducted using two ANN-based logic
approaches and two non-ANN-based counterparts.
Simulations were conducted for limited periods of
summer and winter in 2009, from 3 July to 8 July and
from 27 January to 1 February, respectively.

Results and Discussion

Validation of simulation against
measurement

Predicted simulation data were validated against mea-
sured data in the mock-up chamber in order to demon-
strate reliability for further computer simulations of the
residential buildings. The validation was performed
using a linear regression method. The measured tem-
perature in the chamber was the independent variable
and the simulated temperature was the dependent vari-
able. The linear prediction model proving the relation-
ship according to ANOVA is summarised in Table 3.

The prediction model indicates that there is a signifi-
cant relationship between the measured and simulated
temperatures. The coefficient of determination was
0.8399 for the relationship. This implies that the error
variance could be reduced by 83.99% when the simu-
lated temperature was predicted based on the measured
temperature in the chamber. The ANOVA test result
shown in Table 3 demonstrates that the linear relation-
ship between the measured and simulated temperatures
was acceptable at a very low significance level.

Figure 8 shows an example of the difference between
measured and simulated temperature for some selected
cases that were used for the linear regression. Overall,
the majority of differences did not exceed� 1.0K, and

Table 2. Building conditions and control logic for simulations.

Conditions & Logic Base case Alternative case

Insulation (m2 K/W) Roof 6.69 3.52, 7.04, 10.57, 12.33, 14.09

Wall 3.35 1.76, 5.28, 8.81

Window 0.61 0.35, 0.70, 1.06, 1.23, 1.41, 1.76

Floor 3.7 –

Door 0.2 –

Building Orientation S N, N-E, E, S-E, S-W, W, N-W

Control Logic ANN-based temperature and humidity control

ANN-based PMV control

Non-ANN-based temperature and humidity control
Non-ANN-based PMV control
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the maximum difference between the measured and
simulated temperature was �2.47K. The narrow differ-
ence range was an effective contributor to the strong
linear relationship between measured and simulated tem-
perature, which was used for validation in this study.

These results imply that there is no significant differ-
ence between the measured and simulated temperature.
In summary, this means that the validation of the simu-
lated result against the measurement result was accept-
able with strong reliability, and further computer
simulations that are used to examine the effect of ther-
mal control logic to the indoor environment of residen-
tial buildings also provide strong reliability.

Thermal performance of the ANN-based
control logic

Performance analysis of the residential buildings in this
study was conducted for two categories. The first cat-
egory was the prediction accuracy of the developed
ANN model and the second was thermal conditions

for ANN-based and non-ANN-based logic in terms
of thermal profiles, comfortable periods, and over-
shoots and undershoots.

Prediction accuracy of the ANN model

The prediction accuracy of the ANNmodel for the base
case was examined based on comparison between the
ANN-predicted TEMPPRE and the simulated
TEMPPRE when the ANN-based temperature and
humidity control logic were applied. The ANN-based
TEMPPRE refers to the predicted value from the devel-
oped ANN model, and the simulated TEMPPRE is a
numerically calculated value based on the MATLAB-
IBPT simulation.

As shown in Figure 9, the maximum difference
between the ANN prediction and the numerical simu-
lation did not exceed� 0.5K for all predictions per-
formed in this study. The difference fell into a stable
range with minimum and maximum differences of
�0.4189K and 0.4862K, respectively.
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Figure 8. Difference of the measured and the simulated temperature.

Table 3. ANOVA result for linear relationship between measured and simulated temperature.

Factors

Unstandardised coefficients

t Sig.B Std. Error

(Constant) 4.4648 0.43 10.44 0.00

Measured temperature 0.7928 0.02 39.51 0.00

ANOVA r2¼ 0.8399, F(1,298)¼ 1560.96, Sig.¼ 0.00
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A linear regression model was developed for ANN-
based predicted temperature and simulated tempera-
ture. Simulated temperature was the independent vari-
able and temperature predicted by the ANN model was
the dependent variable. ANOVA results between these
variables are summarised in Table 4.

Overall, a fairly strong linear relationship existed
between the temperature in the ANN-based model
and the temperature in the computer simulation. The
coefficient of determination (r2) of the relationship was
0.7843. This implies that the error variance in
TEMPPRE could be reduced by 78.43% when
TEMPPRE in the numerical simulation was used to pre-
dict TEMPPRE in the ANN model.

The test results indicated that the linear relationship
between the temperature in the ANN-based model and
the computer simulation was acceptable at a significant
level. In summary, the developed ANN model accur-
ately predicted the indoor air temperature condition,
since no significant difference existed between the tem-
peratures from the two computation methods.

Profile of thermal factors

The variation in air temperature, humidity and PMV
with ANN-based logic and non-ANN-based logic
was calculated for the base case condition in order
to compare the influence of control logic on the
indoor thermal environment. The variations for a
particular time period of a selected winter day are
shown in Figure 10.

Overall, non-ANN-based temperature control logic
caused wide fluctuations in temperature over a long
time range, as shown in Figure 10(a). During this
time period, the temperature ranged from 19.8 to
23.1�C whenever the heating system was turned on
and off. The pattern of variation in temperature was
stable, but the temperature deviated from a comfort-
able range for some time periods.

Although the non-ANN-based control did not
always maintain a comfortable temperature, the
ANN-based control logic kept the indoor temperature
more stable, with a temperature range from 20.8 to
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Figure 9. Difference of TEMPPRE between the ANN model and the computer simulation.

Table 4. ANOVA result for �Temperature between computer simulation and ANN based-logic.

Factors

Unstandardised Coefficients

t Sig.B Std. Error

(Constant) 0.0071 0.00 3.06 0.00

Simulated temperature 0.3241 0.01 37.46 0.00

ANOVA r2¼ 0.7843, F(1, 386)¼ 1403.58, Sig.¼ 0.00
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22.4�C during the entire time period. The time range for
the fluctuation of the ANN-based control logic was
shorter than that of the non-ANN-based logic.
Therefore, ANN-based logic effectively maintained
the targeted comfortable temperature range (20–23�C)
selected in this study.

The variation in humidity for ANN-based and
non-ANN-based control is shown in Figure 10(b).
Similar to the variation in temperature, non-
ANN-based logic caused a wide range of humidity
with a long time interval; the humidity varied from
30.3% to 38.2% during the study period. The fluc-
tuation in humidity with ANN-based logic was fre-
quent, but the fluctuation range was within 3% for
the entire time period. The fluctuation in humidity
was caused by temperature movement. Since the
humidity is inversely proportional to the tempera-
ture, when the temperature decreased the humidity
increased and vice versa.

Similar to the temperature variation, PMV was con-
ditioned more properly by the ANN-based PMV con-
trol logic, as shown in Figure 10(c). The ANN-based
logic caused narrower fluctuation ranges than the non-
ANN-based logic.

Comfortable periods

The thermal comfort period maintained by the ANN-
based and non-ANN-based control logics was exam-
ined in order to analyse the thermal performance of
the logics in buildings. The comfort period was calcu-
lated in terms of temperature, humidity and PMV when
the two types of logic were employed under a variety of
building envelope conditions and orientations in
summer and winter. The comfortable periods for all
conditions were expressed as a percentage.

Table 5 summarises the percentage of time within the
comfortable range according to the R-values of the
walls, roof and windows. With changes in the R-values
of the walls, roof and windows, the ANN-based tem-
perature and humidity control logic conditioned the
indoor air temperature and humidity to be more com-
fortable than the non-ANN counterpart. In most cases,
the comfortable periods were increased when ANN-
based logic was applied. The increase reached 5.0% for
temperature and 12.3% for humidity when the R-value
of window was 1.76 m2 K/W in winter.

However, in two unique cases (when the R-value of
the walls was 5.28 m2 K/W in summer and the R-value

Figure 10. Comparative profiles of thermal factors of non-ANN and ANN-based logics in winter (Base case condition,
00:00–06:00, January 30, 2009) (a) Temperature control logic, (b) humidity control logic and (c) PMV control logic.
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of the roof was 3.52 m2 K/W in the winter) the com-
fortable humidity period decreased by 0.3% and 0.1%,
respectively. The reason for this is the lack of training
process for the ANN model. In the earlier testing
period, when the training process was insufficient to
adapt to the given environment, the ANN model was
likely to be incorrect. In addition, the number of times
that the humidifying and dehumidifying devices turned
on and off was significantly lower than that of the heat-
ing and cooling devices. Thus, the iterative self-tuning
process was conducted to a lesser extent. As a result,
the ANN model did not adapt sufficiently to produce
error-free outputs. However, the number of erroneous
results deceased as the test proceeded.

Table 6 summarises the comfortable PMV periods in
winter and summer. In this case, the orientation of the
tested building was south, which was the base case
condition in this study. Overall, the residence was com-
fortable more than 70% of the time even when the
worst-case insulation was used for the building enve-
lope. The comfortable period in winter was longer than
that in summer. For both seasons, ANN-based control
logic increased the comfortable period for all cases
compared to the non-ANN-based logic.

In general, as the insulation of the building envelope
was improved, the comfortable periods were more
significantly increased by ANN-based logic. For
example, the difference between ANN-based and
non-ANN-based logic in winter varied from 7.6 to

12.3% when the R-value of the window was changed
from 0.35 to 1.76 m2 K/W. This result implies that the
contribution of ANN-based logic was more effective
when heat transfer through the building envelope was
reduced.

The variation in periods of comfort for diverse build-
ing orientations is shown in Figure 11. In this case, the
R-values of the building envelope were fixed to the base
case conditions. Similar to the insulation cases, the influ-
ence of ANN-based logic on the comfort period was
stronger in winter than in summer. For example, the
ANN-based temperature controls increased the comfort-
able temperature period by 5.2% when the building
faced north in winter. The improvement range of the
comfortable temperature period was from 2.6% when
the building faced northeast in winter, to 5.2% when
the building faced north in winter.

Humidity and PMV conditions were also better con-
trolled by ANN-based logic, with maximum improve-
ments of 0.8% when the building faced east in summer
and 11.1% when the building faced east in winter.
One exceptional case occurred for humidity when the
building faced southwest in summer; during this
period, the comfortable period of humidity decreased
by 0.03%.

In summary, the results of this analysis indicate two
meaningful aspects. First, ANN-based predictive and
adaptive control logic maintains temperature and humid-
ity better within the targeted comfortable ranges than

Table 5. Percentage of period within comfortable range according to R-values (unit: %).

Building Envelope R-value (m2 K/W)

Temperature Humidity

Winter Summer Winter Summer

non-ANN ANN non-ANN ANN non-ANN ANN non-ANN ANN

Wall 1.76 82.8 85.3 96.6 99.7 99.9 100 99.2 100

3.35 95.8 100 96.1 100 99.9 100 99.2 99.9

5.28 95.4 100 95.9 100 100 100 99.4 99.1

8.81 95.3 100 96.0 100 100 100 99.5 100

Roof 3.52 90.5 94.1 96.3 100 99.9 99.8 99.2 100

6.69 95.8 100 96.1 100 99.9 100 99.2 99.9

7.04 96.0 100 96.1 99.9 100 100 99.2 99.5

10.57 95.9 100 96.1 100 100 100 99.4 99.8

12.33 95.9 100 96.1 100 100 100 99.4 99.5

14.09 95.9 100 96.1 100 100 100 99.5 99.5

Window 0.35 84.7 87.52 96.17 100 80.35 88.04 72.38 79.74

0.61 95.8 100 96.08 100 89.50 98.49 75.13 79.03

0.70 95.78 99.96 96.06 100 88.89 97.03 75.82 82.27

1.06 95.31 100 95.95 100 87.92 98.90 77.75 78.85

1.23 95.20 100 96.00 99.97 87.72 97.32 78.36 85.09

1.41 95.08 100 95.92 100 87.65 98.35 78.78 85.24

1.76 95.00 99.99 96.00 100 87.63 99.96 80.18 85.38
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Figure 11. Comfort periods of temperature, humidity and PMV according to building orientation (R-value: base case
condition). (a) Temperature control logic, (b) humidity control logic and (c) PMV control logic.

Table 6. Percentage of period within the PMV comfortable range according to R-values (unit: %)

Building Envelope R-value (m2 K/W)

Winter Summer

Non-ANN based ANN based Non-ANN based ANN based

Wall 1.76 76.4 82.2 70.4 78.2

3.35 89.5 98.5 75.1 79.0

5.28 88.3 100.0 78.3 88.6

8.81 87.9 97.4 81.7 83.2

Roof 3.52 84.6 93.9 72.2 79.5

6.69 89.5 98.5 75.1 79

7.04 89.5 99.5 75.1 79.5

10.57 89.2 100 76 79.7

14.09 89 100 76.1 82.1

Window ? 0.35 80.35 88.04 72.38 79.74

0.61 89.50 98.49 75.13 79.03

0.7 88.89 97.03 75.82 82.27

1.06 87.92 98.90 77.75 78.85

1.23 87.72 97.32 78.36 85.09

1.41 87.65 98.35 78.78 85.24

1.76 87.63 99.96 80.18 85.38
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non-ANN-based controls. Second, the ANNmodels need
to be sufficiently trained to reduce incorrect output.

Magnitudes of overshoots and
undershoots

The magnitudes of overshoots and undershoots out of
the targeted comfortable ranges were calculated and
compared in order to examine the thermal control per-
formance of the control logic. The magnitudes for each
thermal factor were calculated using equation (4). The
magnitude (S) refers to the summation of the multipli-
cation of the degree (�) and the duration time (td). For
example, the magnitude of temperature overshoots and
undershoots was the duration time multiplied by the
degree of overshoot or undershoot out of the targeted
temperature comfortable range. The units of tempera-
ture, humidity and PMV magnitude are K� h, %�h,
and PMV� h, respectively.

S ¼
X
ð�� tdÞ ð4Þ

The variation in the magnitude of overshoots and
undershoots of temperature and humidity is shown in
Figures 12 and 13. Overall, the ANN-based control
logic stably maintained the thermal conditions within
each targeted comfortable range. The magnitudes of
temperature overshoot and undershoot were reduced
with the change in R-value of the envelope (Figure
12). The amount of the reduction in temperature in
winter ranged from 3.19 to 0.00785K� h for over-
shoots and from 0.05433 to 0.10833K�h for under-
shoots. Corresponding values in summer ranged from
0.0738 to 0.09100K�h for overshoots and from
0.08000 to 0.12617K� h for undershoots.

Similarly, in most cases the magnitude of humidity
overshoots and undershoots was significantly reduced
when the ANN control logic was employed in each
season (Figure 13). The amount of magnitude reduc-
tion was determined to be from 0.00003 to 0.00317
%� h for overshoots and from 0.00017 to 0.00567 %
� h for undershoots in winter, and from 0.09467 to
0.61667 %� h for overshoots and from 0.00500 to
0.02450 %� h for undershoots in summer.

Figure 12. Magnitude of overshoots and undershoots of temperature according to the R-values of envelope components. (a)
Magnitude variation according to R-value of wall, (b) magnitude variation according to R-value of roof and (c) magnitude

variation according to R-value of window.
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Several unique cases were observed for the humidity,
four related to the change in window R-values and one
related to the change in wall R-value. As described in
the earlier section, these exceptions were due to defi-
ciencies in the ANN training process. Before applying
ANN to building thermal controls, proper training data
are required and sufficient training must be conducted.

Similar to the temperature, the magnitudes of PMV
overshoots and overshoots beyond the comfortable
range were also effectively decreased by the ANN-
based control logic, as shown in Figure 14. In winter,
all of the magnitudes were reduced by applying ANN,
which indicates that the thermal control performance of
the ANN model was effective and met the targeted con-
ditions. The ranges of the magnitude reduction for
overshoots and undershoots were from 0.06450 to
0.11733 PMV�h and from 0.07800 to 0.14350
PMV�h, respectively, in winter, and from 0.10400 to
0.25417 PMV� h and from 0.141300 to 0.40483
PMV�h, respectively, in summer.

Based on analysis of the magnitude of reduction, the
ANN-based temperature, humidity and PMV control
logics demonstrated superiority for controlling target

variables more stably within the comfortable ranges
for the changes in envelope R-values.

For buildings with diverse orientations, the ANN-
based control logic produced better results than its non-
ANN-based counterpart in winter and summer, as
shown in Table 7. In both seasons and in most cases,
the magnitudes of temperature overshoot and under-
shoot for the different orientations were zero with
ANN-based predictive and adaptive logic. In all
cases, the magnitudes were decreased by ANN-based
logic. Reductions in overshoots and undershoots
ranged from 0.07183 to 0.07350K�h and 0.09467 to
0.12067K� h, respectively, in winter and from 0.04800
to 0.08917K�h and 0.10983 to 0.15183K� h, respect-
ively, in summer.

Similar to the R-value changes of the building enve-
lopes, unique cases occurred for the magnitude of
humidity overshoots and undershoots in which the
ANN-based humidity control logic produced greater
overshoots and undershoots. This was also caused by
a lack of a sufficient training process. However, in most
cases the magnitudes were reduced when ANN-based
logic was applied compared with non-ANN controls,

Figure 13. Magnitude of overshoots and undershoots of humidity according to the R-values of envelope components. (a)
Magnitude variation according to R-value of wall, (b) magnitude variation according to R-value of roof and (c) magnitude
variation according to R-value of window.
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and the amount of reduction for overshoots and under-
shoots was up to 0.01150 %� h and 0.00183 % � h,
respectively, in winter, and 0.08917 %�h and 0.15183
%� h, respectively, in summer.

The magnitudes of PMV overshoots and under-
shoots out of the targeted comfortable range were all
reduced when the ANN model was applied in the con-
trol logic. The amount of reduction was from 0.07500
to 0.10567 PMV�h for overshoots and from 0.09400
to 0.18100 PMV� h for undershoots. Values for
summer were more significant than those for winter,
and ranged from 0.13183 to 0.21467 PMV�h for over-
shoots and from 0.16133 to 0.41650 PMV�h for
undershoots.

Based on analysis of the magnitude of overshoots
and undershoots of each thermal factor, the ANN-
based control logic demonstrated superiority with
regard to adaptation to changes in envelope insulation
and building orientation. This improvement was due to
the predictability and the adaptability of the developed
ANN models.

Conclusions

This study proposes an ANN-based advanced thermal
control method to effectively maintain indoor thermal
environments. ANN models for predicting the future
indoor temperature, humidity and PMV were devel-
oped and employed in the control logic. The perform-
ance of the developed control logic was compared with
that of non-ANN counterparts. Numerical computer
simulation was employed as the primary method for
tests, and architectural variables such as diverse enve-
lope insulation levels and building orientation were
considered. A summary of the findings of this study is
provided below.

1. The validity of the numerical simulation method was
supported by the significantly high coefficient of
determination for the regression model between
measured and simulated values. The prediction
accuracy of the ANN model was demonstrated by
the statistical similarity between the ANN-predicted

Figure 14. Magnitude of overshoots and undershoots of PMV according to the R-values of envelope components. (a)
Magnitude variation according to R-value of wall, (b) magnitude variation according to R-value of roof and (c) magnitude

variation according to R-value of window.
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values and the simulated values, for which the devel-
oped ANN models demonstrated applicability to the
control logic.

2. The profile comparisons between ANN-based and
non-ANN-based logic for temperature, humidity
and PMV proved the superiority of the ANN-
based logic. ANN-based logic properly conditioned
each thermal factor within the targeted comfortable
ranges, whereas non-ANN-based logic resulted in
deviation from the comfortable ranges.

3. Comfortable periods for temperature, humidity and
PMV increased in most cases for the architectural
variables tested when the ANN-based control logic
was applied. Some exceptions existed as a result of
the lack of a sufficient training process for the ANN
model. Sufficient model training is required before
application to actual buildings in order to prevent
erroneous outputs.

4. ANN-based logic demonstrated superiority in con-
ditioning the thermal environment more stably with
decreased magnitudes of overshoots and under-
shoots in temperature, humidity and PMV.
Exceptions existed in limited cases, indicating that
sufficient self-training of the models is necessary
before their application.

In summary, ANN-based thermal control logic was
able to maintain the indoor thermal environment more
comfortably and stably within the targeted comfortable
ranges than non-ANN control. This advancement
reflects the predictive and adaptive features of ANN
models, but these models need to be sufficiently trained
before application.

In this study, the performance of the developed
ANN-based control logic was tested primarily for a
limited number of variables using a numerical

Table 7. Magnitude of overshoots and undershoots of air temperature, humidity and PMV based on the orientation

Factor and unit Orientation

Winter Winter Summer Summer

Non-ANN ANN Non-ANN ANN

Over
shoot

Under
shoot

Over
shoot

Under
shoot

Over
shoot

Under
shoot

Over
shoot

Under
shoot

Temperature (K� h) S 0.06583 �0.10517 0.0 0.0 0.08917 �0.10983 0.0 0.0

SE 0.06200 �0.10450 0.0 0.0 0.07433 �0.13967 0.0 0.0

E 0.06833 �0.11300 0.0 0.0 0.07083 �0.14950 0.0 0.0

NE 0.06533 �0.11633 0.0 0.0 0.06033 �0.14717 0.0 0.0

N 0.07067 �0.12150 0.0 �0.00083 0.06733 �0.14567 0.0 0.0

NW 0.06867 �0.11867 0.0 0.0 0.06617 �0.15183 0.01817 0.0

W 0.07350 �0.11483 0.0 0.0 0.07633 �0.13900 0.0 0.0

SW 0.06483 �0.09583 0.0 �0.00117 0.08900 �0.12667 0.0 0.0

Humidity (%� h) S 0.00317 �0.00183 0.0 0.0 0.52783 �0.01833 0.00367 �0.00350

SE 0.00083 �0.00133 0.0 �0.00067 0.48217 �0.01583 0.01167 �0.01383

E 0.00033 �0.00017 0.0 0.0 0.52583 �0.00933 0.03733 0.0

NE 0.01150 �0.00133 0.0 0.0 0.47083 �0.01050 0.0 �0.02417

N 0.00117 �0.00100 0.00650 0.00033 0.49850 �0.01133 0.01950 0.0

NW 0.00250 �0.00117 0.0 0.0 0.44400 �0.00767 0.00900 �0.02050

W 0.00117 �0.00033 0.0 �0.00017 0.37533 �0.01650 0.01767 �0.05750

SW 0.00017 �0.00017 0.00183 0.0 0.31567 �0.00767 0.0 �0.05350

PMV (PMV� h) S 0.09633 �0.15183 0.0 �0.01167 0.23500 �0.39183 0.02750 �0.14683

SE 0.08950 �0.15967 0.0 0.0 0.20867 �0.41767 0.00417 �0.00600

E 0.09917 �0.17633 0.00200 0.0 0.16750 �0.43233 0.00017 �0.10217

NE 0.09467 �0.18883 0.01967 �0.02333 0.14050 �0.44633 0.00100 �0.03467

N 0.09550 �0.18400 0.0 �0.00300 0.15733 �0.45317 0.00017 �0.06950

NW 0.09833 �0.18367 0.0 �0.08967 0.14600 �0.45667 0.01417 �0.29533

W 0.10333 �0.17400 0.0 0.0 0.17383 �0.43283 0.00017 �0.01633

SW 0.10567 �0.16017 0.0 0.0 0.21733 �0.41033 0.00267 �0.09950
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computer simulation. Further studies are necessary for
application of the developed logics to actual buildings
and examination of their performance. Such studies
should support the applicability of the developed con-
trol logics to various building-related conditions.
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