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� Initial ANN model was developed for predicting the time to the setback temperature.
� Initial model was optimized for producing accurate output.
� Optimized model proved its prediction accuracy.
� ANN-based algorithms were developed and tested their performance.
� ANN-based algorithms presented superior thermal comfort or energy efficiency.
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a b s t r a c t

In this study, a temperature control algorithm was developed to apply a setback temperature predictively
for the cooling system of a residential building during occupied periods by residents. An artificial neural
network (ANN) model was developed to determine the required time for increasing the current indoor
temperature to the setback temperature. This study involved three phases: development of the initial
ANN-based prediction model, optimization and testing of the initial model, and development and testing
of three control algorithms.
The development and performance testing of the model and algorithm were conducted using TRNSYS

and MATLAB. Through the development and optimization process, the final ANN model employed indoor
temperature and the temperature difference between the current and target setback temperature as two
input neurons. The optimal number of hidden layers, number of neurons, learning rate, and moment were
determined to be 4, 9, 0.6, and 0.9, respectively. The tangent–sigmoid and pure-linear transfer function
was used in the hidden and output neurons, respectively. The ANN model used 100 training data sets
with sliding-window method for data management. Levenberg-Marquart training method was employed
for model training. The optimized model had a prediction accuracy of 0.9097 root mean square errors
when compared with the simulated results.
Employing the ANN model, ANN-based algorithms maintained indoor temperatures better within tar-

get ranges. Compared to the conventional algorithm, the ANN-based algorithms reduced the duration of
time, in which the indoor temperature was out of the targeted temperature range, as much as 56 and
75 min, respectively. In addition, two ANN-based algorithms removed less heat from indoor space as
much as 1.06% and 1.26%. Thus, the applicability of the ANN model and the algorithm presented their
potential to be applied for more effective thermal conditioning with reduced energy consumption.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Thermal conditioning system generally consumes a substantial
amount of energy in buildings. In Korea, the energy consumed by
the system accounts for 58.1% and 29.6% of the total energy con-
sumption in residential buildings and all buildings, respectively
[1,2]. Various theoretical and practical approaches for efficient
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Nomenclature

TEMPIN indoor air temperature [�C]
DTEMPIN change in indoor air temperature from the preceding

control cycle [�C]
TEMPOUT outdoor air temperature [�C]
DTEMPOUT change in outdoor air temperature from that 1 h

earlier [�C]
TEMPDIF difference between the current and setback

temperature [�C]
TIMPCUR current time
TIMPSBT predicted time required for increasing the current

indoor temperature to the setback temperature, min
Si values predicted by ANN models

Mi numerically simulated values by MATLAB and TRANSYS
NHL number of hidden layers
NHN number of hidden neurons
LR learning rate
MO momentum
w connection weight
NET summation function
TF transfer function
opj output from the hidden neurons
opk output from the output neurons
tpk desired output
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energy conservation and maintaining comfortable indoor thermal
environments have been examined [2–9]. The application of a set-
back temperature in residential thermal conditioning systems dur-
ing nighttime and unoccupied daytime periods is a widely adopted
example of such methods.

Appropriate setback temperature application can save up to
23% and 53% of the energy consumption for cooling and heating,
respectively [2–9]. In particular, nighttime and daytime setback
application can conserve up to 16.9% and 53.0% of the energy con-
sumption for cooling and heating in regions with a hot and humid
climate as well as 9.5% and 28.2% of the energy consumption for
cooling and heating in regions with a cold climate [2].

Apart from energy conservation, maintaining the thermal com-
fort of the occupants is a crucial factor relevant to the indoor envi-
ronmental quality in residential buildings. For example, early
setback application can improve energy efficiency but can also lead
to thermal discomfort. Thus, the optimal onset time of the setback
temperature must be determined under constraints of both ther-
mal comfort and energy efficiency.

Artificial neural networks (ANNs), which is a type of artificial
intelligence, have highpotential as an advanced strategy for control-
ling indoor thermal conditions and realizing high building energy
efficiency. McCulloch and Pitts developed a computational ANN
model that replicates thebiological and learningprocesses of human
neural systems [10]. ANNmodels comprise three layers: input, hid-
den, andoutput layers. The input layer uses a series of neurons as the
input, and the hidden layers are comprised of hidden neurons. The
output layer employs numerous output neurons.

Neurons between in different layers are connected according to
their specific weights, and the neurons in the hidden layers and the
output layer have transfer functions. ANN models involve two
major processes. The first process is the feed forward process for
calculating the output from a series of inputs. This process uses
the connectivity (i.e., weights, w) between the neurons and the
transfer functions. The output of an ANN model makes predictive
controls feasible. For example, each input value is multiplied by
its own weight between the input and hidden neurons. Values
arrived at each hidden neuron are summed by the neurons in the
hidden layer. The hidden neurons produce new values by using
their transfer function, which are weighted and forwarded to the
output neurons. Similarly, the output neurons sum the values
and generate outputs by using their transfer function.

The second process is back-propagation for self-learning by
using the output error, which is the difference between the calcu-
lated and desired outputs. This iterative self-learning process con-
tinuously updates the connectivity between the neurons, thus
realizing adaptive control [11].
ANN model–based controls are superior to mathematical mod-
els, such as regression models or proportional–integral–derivative
(PID) controllers, in terms of predicting and controlling the accu-
racy of thermal loads and systems operation in buildings. ANN-
based control strategies can provide better thermal conditions
and improved building energy efficiency. The outcomes of relevant
studies are summarized in Table 1.

In particular, a method was studied to determine the optimal
start moment of the setback period for the heating system [25].
In the study, an artificial neural network (ANN) model was devel-
oped for predicting the required time duration from the current
indoor temperature to drop the designated setback temperature
for the heating system. Five input variables were initially
employed as input neurons – indoor air temperature, change from
the indoor air temperature of the preceding control cycle, outdoor
air temperature, change of the outdoor air temperature from one
hour prior, and temperature difference from the setback tempera-
ture. After optimization of the ANN model for the input neuron
selection, number of hidden layer and neurons, learning rate, and
moment, the optimized model showed statistically meaningful
prediction accuracy.

Along with the space heating, the space cooling is also a key fac-
tor in creating comfortable indoor thermal environments.
Although relevant studies have yielded useful findings for the heat-
ing systems, the optimal method for controlling the cooling sys-
tems has not been comprehensively investigated. In other words,
a control strategy for realizing improved thermal environments
at high energy efficiency is lacking.

Therefore, this study focuses on two research objectives. The
primary objective is to develop an ANN-based prediction model
to determine the optimal onset time of the setback temperature
during normal occupied periods in a building in cooling seasons.
The secondary objective is to develop a control algorithm by using
the prediction model to create better thermal environment in
space with low energy consumption. The optimal onset of setback
temperature would save avoidable energy consumption and pro-
vide thermal environments that are within a target range during
the early part of the unoccupied periods.

To achieve these objectives, the study is divided into three
major phases, as illustrated in Fig. 1. First, an initial prediction
model was developed using the ANN theory. In addition, the rela-
tionship between the input and output variables were statistically
analyzed, and the final input variables for the ANN model were
determined through this analysis.

Second, the model was optimized by parametrically examining
the performance of the ANNmodel with variation in the number of
hidden layers (NHL), the number of hidden neurons in each hidden



Table 1
Previous studies using the ANN models.

Reference
number

Author(s) Objectives and findings

[12,13] Mohanraj et al. � Review of ANN applications for thermal analysis of heat exchangers using four categories, (i) modeling,
(ii) parameter estimation, (iii) phase change characteristics estimation, and (iv) controlling

� Review of ANN applications for energy and exergy analysis of refrigeration, air conditioning and heat
pump systems

[14,15] Mba et al.; Papantoniou and Kolokotsa � ANN models for predicting indoor and outdoor thermal conditions such as indoor temperature and
humidity as well as outdoor temperature

� Proving strong correlation results between the ANN predictions and the experimental/measured data
[16–20] Deb et al.; Chae et al.; Li et al.; Paudel et al.;

Escrivá-Escrivá et al.
� ANN models for forecasting load and energy for building thermal conditioning
� Presentation of accurate predictability for the load and energy consumption, thus potential to work as
fundamental determinants for controlling building thermal conditions more comfortably and energy-
efficiently

[11,21] Moon et al. � ANN models for controlling indoor temperature, humidity, and PMV of residential buildings
� Provision of more stable and comfortable thermal conditions
� Provision of similar amount of energy by ANN applications compared to the non-applications of ANN

[22–25] Yeo and Kim KW; Yang and Kim; Moon
and Jung

� ANN models and algorithms for predicting and employing the optimal start and stop moment of the
setback period for the heating system in the office buildings as well as accommodation buildings

� Presentation of prediction accuracy and applicability of the ANN models
� Potential to operate more comfortable and energy-efficient thermal controls by ANN-based algorithms

[26–30] Moon et al. � ANN models for optimally controlling the openings of the double skin envelopes and thermal control
systems

� Provision of more comfortable thermal environment in double skin buildings
[31–35] Argiriou et al.; Morel et al.; Lee et al. � ANN models for operating hydronic heating systems of solar buildings, radiant heating system, and

radiant underfloor heating system
� Reduction of heating energy consumption and provision of more stable and comfortable thermal
environment

[36] Yaïci and Entchev � ANN models for predicting the performance of a solar thermal energy systems used of domestic hot
water and space heating

� Provision of high accuracy and reliability for predicting the preheat tank stratification temperatures
and solar fraction

[37] Chow et al. � Incorporative method using ANN and Genetic algorithm for the optimal use of fuel and electricity for
operating an absorption chiller system

� Presentation of prediction accuracy for the mass flow rated of diesel oil, electric power of the cooling
water pump, chilled water pump, and coefficient of performance (COP) of the system

[38–40] Esen et al. � ANN models for operating ground coupled heat pump system (GCHP)
� Applicability with accurate prediction results for the coefficient of performance (COP) of ground cou-
pled heat pump (GCHP) system

[41] Fannou et al. � ANN model for predicting the compressor power consumption and heating capacity of the direct
expansion geothermal heat pump

� Providing very satisfactory prediction accuracy for target outputs

Fig. 1. Research process.
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layer (NHN), the learning rate (LR), and the moment (MO). The opti-
mal values were applied to the initial model, and its prediction per-
formance was analyzed.

Finally, the control algorithm employing the optimized ANN
model was developed. The control performance of two ANN-
based predictive algorithms and a conventional algorithm were
comparatively examined in terms of thermal quality and energy
efficiency in order to demonstrate the potential and applicability
of the proposed algorithm.
2. Initial model development and optimization

2.1. Initial model

An ANN-based model was designed to calculate the time
(TIMPSBT) required for increasing the current indoor temperature
to the setback temperature. The obtained TIMPSBT was subse-
quently used in the control algorithm for employing the setback
temperature prior to the beginning of the unoccupied period. For
example, at a current temperature of 24.0 �C, the target setback
temperature is 28.0 �C, and TIMESBT is the amount of time in min-
utes to increase of the temperature from 24.0 �C to 28.0 �C. If the
sum of TIMPSBT and the current time is at or after the beginning
of the unoccupied period, the algorithm employs the setback tem-
perature at this moment before the actual unoccupied period.

Fig. 2 depicts the initial model. The initial layer was composed
of five input neurons: indoor air temperature (TEMPIN, �C), change
in indoor air temperature from the preceding control cycle
(DTEMPIN, �C), outdoor air temperature (TEMPOUT, �C), change in
outdoor air temperature from that 1 h earlier (DTEMPOUT, �C),
and difference between the current and setback temperatures
(TEMPDIF, �C). The initial input neurons were selected since they
were relevant to the output neuron, which is the predicted time
required for increasing the current indoor temperature to the set-
back temperature (TIMPSBT, min). The final input neuron was
determined through the statistical analysis using linear correla-
tions between the initial input neurons (namely, TEMPIN, DTEMPIN,



Fig. 2. Initial ANN model.
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TEMPOUT, DTEMPOUT, and TEMPDIF) and the output neuron
(namely, TIMESBT). The neurons which had strong correlation were
employed as the final input neurons.

The input values for each neuron were normalized to be
between 0 and 1 before being multiplied by its weight. The ranges
for TEMPIN, DTEMPIN, TEMPOUT, DTEMPOUT, and TEMPDIF were
10 �C to 30 �C, �10 �C to 10 �C, �20 �C to 40 �C, �10 �C to 10 �C,
and 0 �C to 10 �C, respectively. The ranges of input neuron covered
the normally occurred conditions in Korea.

The number of hidden layers (NHL) and the number of neurons
in each hidden layer (NHN) were initially assigned as 3 and 4,
respectively based on the models in a previous study which devel-
oped an ANN model for predicting a time required for changing
from the current temperature to the set-point temperature of the
cooling system in accommodation building [42]. The optimal num-
ber of hidden layer and hidden neuron were finalized through the
optimization process described in Section 2.2. The tangent–sig-
moid transfer function was used in the hidden neurons. In addi-
tion, an output (TIMESBT) and pure linear transfer functions were
employed in the output neuron.

For model training, 100 training data sets were prepared.
MATLAB (matrix laboratory) [43] and TRNSYS (transient systems
simulation) [44] software were used to acquire the data sets for
training ANN model. Fig. 3 illustrates the incorporative data collec-
tion process for developing the ANN model and the performance
testing of the algorithm.
Fig. 3. Cooperation of TRNSYS and MATLAB adopted in the study.
Table 2 describes component types, roles and the modeling
results obtained using TRNSYS and MATLAB. The TRNSYS software
was employed for modeling the test building and calculating its
indoor temperature using the conditions included building proper-
ties and relevant components such as weather data, a cooling sys-
tem, infiltration rate, and internal heat gain.

The simulation results in the TRNSYS were transferred to the
MATLAB using the Type155 component. The MATLAB software
and its neural network toolbox were employed for developing
the ANN model and for determining the cooling system operation.
Decisions for the cooling system controls based on the ANN predic-
tion result were fed into the TRNSYS in order to operate the cooling
system. Then, new simulation results including a new indoor tem-
perature from the TRNSYS were transferred again to the MATLAB.
This process was repeated during the simulation period for the
data collection and performance tests of the algorithms.

The reliability of the combined method of MATLAB and TRNSYS
software was proven in previous studies [45,46], in which the pre-
dicted indoor temperatures from an ANNmodel using the identical
method in this study were compared with the measured indoor
temperatures from an existing building. The root mean square
error (RMSE) between the predicted and measured temperatures
was 0.0259 K, smaller than the designated goal of 0.1 K. This find-
ing supports the reliability of the applied simulation method to
successfully conduct development and performance tests of an
ANN model and control algorithms.

Data sets for the initial model training and correlation analysis
were acquired using a test module shown in Fig. 4. The physical
properties of the modules are summarized in Table 3. The thermal
resistances of the wall, roof, floor and windows of the module were
3.72, 6.80, 3.70, and 0.71 m2K/W, respectively. A convective cool-
ing system with a heat removal capacity of 10,000 kJ/h was
installed for cooling. The ratio of window to wall was 0.20 and
0.10 for the south-facing and north-facing façades, respectively;
no windows were installed on the east and west façades. The infil-
tration rate was assumed to be 2.0 air changes per hour (ACH), a
moderate value for a building. Internal heat gain was calculated
on the basis of the heat generated by two occupants, equipment
and lighting fixtures in space.

The module was assumed to be located in Seoul, South Korea
(Latitude: 37.56� N, Longitude: 126.98� E). The data set was col-
lected from June 1 to September 30, which represents typical cool-
ing season in summer. During this period, the weather is hot and
humid in Seoul. Typical Meteorological Year (TMY2) weather data
were used for the simulations.

One data set represents one day, which means the 100 data sets
were acquired throughout 100 days. Normally in Korea, 100 days
can make an entire summer season. Thus, 100 days training data
sets might be enough to reflect the diverse conditions occurring
in the summer.

In addition, the sliding-window method was employed for
training data management. Thus, during the iterative training pro-
cess, the model replaced the oldest data set with the new data set
for reflecting the changing environment. Since the developed ANN
model conducts the iterative training process with a new data set,
the model can adapt itself to the new environment (e.g., change of
building orientation) and will produce accurate and stable predic-
tion results.

A minute goal of 0.0, an epoch of 1000 evaluations, a learning
rate (LR) of 0.6, and a moment (MO) of 0.2 were initially applied
for training based on the optimal values suggested in a previous
study [42]. Similar to the NHL and NHN, the optimal number of LR
and MO were determined through the optimization process
described in Section 2.2.

The linear correlations between the initial input variables
(namely, TEMPIN, DTEMPIN, TEMPOUT, DTEMPOUT, and TEMPDIF)



Table 2
Modeling result and employed TRNSYS types and roles.

Diagram of Modeling Result

Types and roles Type9c � Importing a TMY2 weather file for the site
Type16a � Calculating solar radiation on building surfaces
Type33e � Calculating dew-point temperature of surrounding exterior
Type69b � Calculating sky temperature
Type56a-TRNFlow � Calling building modeling result of TRNBUILD

� Calculating indoor temperature of the test building
Type155 � Calling the algorithm in MATLAB

� Producing training and checking datasets
� Calculating signal for the cooling system operation

Type65d-2 � Producing and displaying the output file

Fig. 4. Structure of tested building for collecting training and checking data sets.

Table 3
Properties of a tested module for collection of datasets used in the ANN model.

Components Property description

Weather data & climate
conditions during
cooling season

� TMY2 data for Seoul, South Korea (latitude:
37.56�N, longitude: 126.98�E)

� Hot and humid: 23.5 �C air temperature, 72.7%
relative humidity from June to September on
average

Dimension – Width: 4.2 m – Depth: 3.6 m – Height: 3.05 m
Envelope insulation

[m2 K/W]
– Exterior wall: 3.72 – Roof: 6.80 – Floor: 3.70
– Window: 0.71 with 6 mm gray glass + 16 mm

argon gas + 6 mm gray glass
Cooling system 10,000 kJ/h convective heat removal
Ratio of window to wall – East: 0.00, – West: 0.00, – South: 0.20, –

North: 0.10
Infiltration rate 2.0 ACH
Internal

heat
gain

Occupants 2 seated-light work persons
Equipment 2 computers with printer
Lighting
fixtures

5 W/m2
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and the output variable (namely, TIMESBT) in one hundred new
data sets were statistically analyzed. Data sets were collected iden-
tically using the TRNSYS and MATLAB software from the same test
building. The input and output variables were used as independent
and dependent variables, respectively. Also, the initial ANN model
was modified to include only input neurons with strong relevance.

2.2. Optimization

For the purpose of increasing the accuracy and stability of the
model, a parametrical optimization process was employed to
determine the optimal structure and learning method of the initial
ANN model. Several methods for optimizing the structure of the
ANN model have been discussed. In some studies, the number of
hidden layer and hidden neuron, learning rate, and moment were
sequentially tested [22,23,45]. When one parameter (e.g., the
number of hidden layer) was tested, other parameters (e.g., the
number of hidden layer, learning rate, and moment) were fixed
as assigned values.

After finding the optimal value for the first parameter, the sec-
ond parameter (e.g., the number of hidden neuron) was tested for
finding optimal value. At this case, the first parameter was fixed as
the found optimal value, and the other two parameters were fixed
as assigned values. Then, the identical process was conducted for
finding the optimal values for third and fourth parameters (e.g.,
learning rate and moment).

As an advanced method, the coupled approach for finding opti-
mal structure began to be applied. Two parameters (e.g., the num-
ber of hidden layer and neurons) were tested in combination for
finding the optimal values together. During this process, the other
parameters (e.g., learning rate and moment) were fixed as the
assigned values. After found the optimal values for the first two
parameters, the last two parameters were tested in the same
way [25].



Table 4
Values for optimizing the ANN components.

Parameters to be optimized Values to be tested

NHL 1, 2, 3, 4, 5
NHN 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
LR 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
MO 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
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In this study, we applied the method that optimizes the param-
eters in a couple fashion. The optimization was conducted by cou-
pling the ANN parameters: a series of hidden layers (NHL) and
hidden neurons (NHN) were tested together, and a series of learning
rates (LR) and moments (MO) were tested together. To optimize
NHL and NHN, LR and MO were fixed at the initial values (0.6 and
0.2, respectively). Subsequently, LR and MOwere optimized by set-
ting NHL and NHN to their optimal values. Table 4 summarizes the
parametrical values tested to optimize each parameter.

Another 100 data sets were collected to optimize the model
through the method explained in Fig. 4 and Tables 2 and 3 of
Section 2.1. The correlations between the numerically simulated
values (Mi) using the MATLAB and TRNSYS software and the
predicted values (Si) by ANN model were evaluated. The values
that produced the highest coefficients of determination (R2) for
each parameter were determined to be the optimal values.

For evaluating the performance of the optimized models, 100
checking data sets were collected from an identical test module.
The precision accuracy was evaluated in terms of the liner correla-
tions between Mi and Si.
3. Algorithm development and evaluation

One conventional control algorithm and two ANN-based control
algorithms were developed to operate the cooling system. The
flows of the conventional and ANN-based algorithms are presented
in Figs. 5 and 6, respectively. In addition, the descriptions of the
three algorithms are summarized in Table 5. The conventional
algorithm employs the setback temperature only when TIMECUR
is within the setback period. This algorithm is the widespread
method for controlling the cooling system.

The ANN-based algorithms employ the setback temperature
when the summation of TIMECUR and TIMESBT is at or within the
setback period. The ANN-based algorithm I employs the setback
operating range when the summation of the current time
(TIMECUR) and TIMESBT to the lower threshold of the setback oper-
ating range is at or after the onset of the setback period. For exam-
ple, if TIMECUR is 7:30 AM and TIMESBT to 25 �C (the lower
threshold of the setback operating range: 25–28 �C) is 30 min, then
the algorithm determines to set the setback temperature for the
Fig. 5. Flowchart of the co
cooling system at this moment because the summation of TIMECUR
and TIMESBT reaches the end of the occupied period. Because the
cooling system is predictively operated, the indoor temperature
increases to the lower threshold of the setback operating range
at the moment when the setback is applied. After setback applica-
tion, this algorithm can considerably reduce the duration of time
period, in which the indoor temperature is out of the targeted tem-
perature range.

The ANN-based algorithm II employs setback operating range if
the summation of TIMECUR and TIMESBT to the upper threshold of
the normal operating range reaches at or after the onset of the set-
back period. For example, if TIMECUR is 7:20 AM and TIMESBT to the
26 �C, which is the upper threshold of the normal operating range
between 23 and 26 �C, is 40 min, then the algorithm determines to
set the setback temperature for the cooling system at this moment
because the summation of TIMECUR and TIMESBT reaches the end of
the occupied period. This algorithm has a probability to keep tem-
perature, which is higher than the targeted range, at the final of the
occupied period, but may use less energy than the ANN-based
algorithm I.

The temperature conditions using the conventional algorithm
and the ANN-based algorithms for the onset of the unoccupied per-
iod are shown in Fig. 7. Because the conventional algorithm main-
tains the normal set-point temperature throughout the occupied
period, the indoor temperature is maintained within the normal
operating range throughout this period. After the unoccupied per-
iod begins, the cooling system begins to increase the temperature
to the setback temperature. Thus, cool conditions unnecessarily
prevail for a certain period of time after the unoccupied period
begins resulting in energy inefficiency.

The thermal and energy performance of the three algorithms
were tested according to the procedure described in Fig. 4. Temper-
ature conditions and heat removal by the cooling systemwere sim-
ulated for the cooling season from June 1 to September 30. The
layout of a tested building, which was assumed to be a residential
building, is shown in Fig. 8. Detailed buildings properties used for
performance tests are summarized in Table 6.

The building was assumed to be located in Soul, Korea (Lati-
tude: 37.54� N, Longitude: 126.98� E). For algorithm testing, build-
ing characteristics such as dimension, envelope insulation, cooling
system capacity, ratio of window to wall, infiltration rate, and
internal gain were different from those used in the test model to
obtain the training data sets. The dimension of the building was
12.0 m wide, 7.7 m deep and 5.0 m high. The insulation of the wall,
roof, floor, and window were 2.84, 5.21, 2.69, and 0.71 m2K/W of
respectively. The heat removal capacity of convective cooling sys-
tem was 30,000 kJ/h. The ratio of window to wall was 0.14, 0.13,
0.244, and 0.08 for the East, West, South, and North-facing facades,
respectively. Infiltration rate was 1.2 air changes per hour (ACH).
nventional algorithm.



Fig. 6. Flowchart of the ANN-based algorithm.

Table 5
Descriptions of three algorithms.

Algorithms Principles

For occupied period For unoccupied period

Conventional
algorithm

Follow the normal set-point and setback temperature for the
occupied and unoccupied period

ANN-based
algorithm
I

If TIMECUR + TIMESBT to lower
limit of the setback range,
then set the setback
temperature

Follow the setback
temperature for the
occupied and unoccupied
period

ANN-based
algorithm
II

If TIMECUR + TIMESBT to upper
limit of the normal range,
then set the setback
temperature
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Four persons, two computers, and lighting fixtures generating
5 W/m2 were assumed to be the source of internal heat gain.
4. Results

4.1. Development and optimization of the ANN model

Linear regression analysis was performed for input variables
(i.e., TEMPIN,DTEMPIN, TEMPOUT,DTEMPOUT, and TEMPDIF) and out-
put variable (i.e., TIMESBT) of the initial model for different setback
temperatures from 25.0 �C (setback operating range: 23.5–26.5 �C)
to 28.5 �C (setback operating range: 27.0–30.0 �C). For the linear
regression, the input variable was used as an independent variable
and output variable was used as a dependent variable. The range of
TEMPIN, DTEMPIN, TEMPOUT, DTEMPOUT, TEMPDIF, and TIMESBT of
the data sets was 22.20–26.93 �C, �1.49 �C to 1.36 �C, 18.19–
29.63 �C, �0.01 �C to 0.03 �C, and 3.07–7.80 �C, and 2–99 min,
respectively. Table 7 summarizes the coefficients of determination
(R2) for the linear relationships between the input and output
variables.
Fig. 7. Comparative temperature c
TEMPIN and TEMPDIF were effectively correlated with TIMPSBT.
However, the correlations became weaker as the setback tempera-
ture was set higher. For the normally recommended setback tem-
perature range of 25.0–26.5 �C, the coefficient of determination
(R2) ranged from 0.4418 to 0.7538. The correlations between
DTEMPIN, TEMPOUT, DTEMPOUT and the output variable were rela-
tively weaker, with R2 ranging from 0.0030 to 0.2926.

Among all variables, only TEMPIN and TEMPDIF were used as the
input variables in the revised ANN model since they correlated
with TIMPSBT stronger compared to other variables. Compared to
the ANN model which employed three input variables such as
TEMPIN, TEMPOUT, and TEMPDIF for predicting the time duration
required for reducing the current indoor temperature to the set-
back temperature for the heating system in winter [25], TEMPOUT
is excluded from the input neurons because the correlation
between TEMPOUT and TIMPSBT was weaker in the summer season.
It can be inferred that since the outdoor temperature was similar to
the setback temperature, TEMPOUT did not significantly impact the
amount of TIMPSBT.

The structure and learning method of the revised model were
optimized using a parametrical process. First, the optimal values
for the number of hidden layers (NHL) and the number of hidden
neurons (NHN) were determined as values that had the lowest root
mean square errors (RMSE) for the difference between the pre-
dicted values (Si) by ANNmodels and numerically simulated values
(Mi) by MATLAB and TRANSYS.

Tables 8 and 9 summarize the root mean square error (RMSE)
for the 100 data sets described in Section 2.2. The RMSE for models
with 1–5 NHL and 1–10 NHN ranged from 3.14 to 14.53 min as
shown in Table 8. The lowest RMSE was obtained when NHL and
NHN were set to 1 and 7, respectively. Therefore, the model was
optimized by modifying its structure to have 1 hidden layer and
7 hidden neurons. Next, in a similar manner, learning rate (LR)
and moment (MO) were optimized by varying these parameters
between 0.1 and 1.0 and 0.1 and 1.0, respectively, while setting
NHL and NHN to the optimized values.
onditions by three algorithms.
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Fig. 8. Layout of a building for performance test (D: Door, W: Window).

Table 6
Features of tested buildings for performance of the algorithms.

Components Property description

Weather data & climate
conditions during the
cooling season

� TMY2 data for Seoul, South Korea (latitude:
37.56�N, longitude: 126.98�E)

� Hot and humid: 23.5 �C air temperature, 72.7%
relative humidity from June to September on
average

Dimension – Width: 12.0 m – Depth: 7.7 m – Height: 5.0 m
Envelope insulation

[m2 K/W]
– Exterior wall: 2.84 – Roof: 5.21 – Floor: 2.69
– Window: 0.71 with 6 mm gray glass + 16 mm

argon gas + 6 mm gray glass
Cooling system 30,000 kJ/h convective heat removal
Ratio of window to wall – East: 0.14, – West: 0.13, – South: 0.244, –

North : 0.08
Infiltration rate 1.2 ACH
Internal

heat
gain

Occupants 4 seated- light work persons
Equipment 2 computers with printer
Lighting
fixtures

5 W/m2

Table 7
Coefficient of determination (r2) between input and output (TIMESBT) variables.

Setback temperature (�C) Input variables

TEMPIN DTEMPIN

25.0 0.7538 0.1121
25.5 0.4684 0.2323
26.0 0.6740 0.1708
26.5 0.4418 0.0871
27.0 0.3462 0.0459
27.5 0.3038 0.0077
28.0 0.1996 0.0911
28.5 0.1277 0.0045
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As shown in Table 9, the lowest RMSE of 2.53 min was obtained
when LR and MO were set to 0.6 and 0.7, respectively. Thus, these
values were newly applied in the optimized ANN model in Fig. 9,
which employed two input neurons (TEMPIN and TEMPDIF), 1 NHL,
7 NHN, 0.6 LR, and 0.7 MO. The ANN model which was developed
for the heating system in the previous study [25], the optimal val-
ues for NHL, NHN, LR, and MO were different to be 4, 9, 0.6, and 0.9.
Thus, the respective model needs to be applied for the cooling and
heating model.

The linear relationship between predicted values (Si) by ANN
models and numerically simulated values (Mi) by MATLAB and
TRANSYS is shown in Fig. 10. The data set used for the regression
was based on a prediction phase in order to examine the accuracy
of ANN performance in the prediction phase. The linear prediction
model between the values is analyzed using the Analysis of Vari-
able (ANOVA), which is a well known test method. The analysis
result is summarized in Table 10.

The coefficient of determination (R2) between the predicted val-
ues by ANN models (Si) and numerically simulated values by
MATLAB and TRANSYS (Mi) was 0.9097. Even though R2 was
TEMPOUT DTEMPOUT TEMPDIF

0.0030 0.0779 0.7538
0.0208 0.0779 0.4684
0.1425 0.1509 0.6740
0.0515 0.2926 0.4418
0.0630 0.1851 0.3462
0.0546 0.1186 0.3038
0.0186 0.1837 0.1996
0.0848 0.2575 0.1277



Table 8
Root mean square error (RMSE) between Si and Mi for different NHL and NHN.

NHL

1 2 3 4 5

NHN 1 3.25 3.24 3.25 3.25 3.25
2 3.64 4.14 3.62 3.99 3.4
3 3.8 4.09 3.15 3.38 4.1
4 3.3 4.2 3.39 4.25 3.82
5 3.43 3.61 3.84 5.99 3.75
6 3.6 4.45 4.31 7.85 3.69
7 3.14 5.07 4.79 4.45 5.72
8 3.42 4.07 4.95 6.03 3.54
9 3.35 4.25 6.1 7.06 2.67
10 3.42 5.18 14.53 7 3.82

Table 9
Root mean square error (RMSE) between Si and Mi for different LR and MO.

LR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MO 0.1 5.72 3.94 3.2 2.75 3.23 2.8 2.85 2.85 3.45 3.41
0.2 3.44 3.01 3.45 4.35 2.93 3.13 3.23 3.96 2.96 3.1
0.3 3.54 4.09 2.92 3.2 2.87 3.24 3.12 3.75 3.91 3.53
0.4 3.79 3.83 3.7 2.99 3.4 3.21 3.42 3.29 3.48 3.42
0.5 3.79 3.53 3.88 3.48 3.32 3.16 3.72 3.07 4.33 3.57
0.6 3.05 3.14 3.03 3.08 4.03 3.01 2.74 3.06 3.66 3.38
0.7 3.62 3.62 3.67 2.96 3.9 2.53 2.9 2.81 3.19 3.49
0.8 3.55 3.08 3.67 3.22 3.96 3.42 3.43 3.45 3.54 3.61
0.9 3.67 3.04 2.98 3.44 3.57 3.6 3.2 3.32 3.98 3.12
1 3.31 3.39 3.59 3.57 3.74 3.76 3.37 3.76 3.66 3.35

Fig. 9. Optimized ANN model.

y = 0.9411x + 0.3876
R2 = 0.9097
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Fig. 10. Relationship between predicted values by ANN models (Si) and simulated
values by MATLAB and TRNSYS (Mi) for the optimized model.

1298 J.W. Moon et al. / Applied Thermal Engineering 113 (2017) 1290–1302
reduced compared to the 0.9999 by the ANN model developed for
the heating system [25], the ANVOA test results indicate that the
predicted valued by ANN model and the simulated values from
the numerical simulation are strongly correlated each other. The
prediction model was acceptable under a significance level of
0.01 (F(98,1) = 987.81, Sig. = 0.00).

As an additional step to examine the deviation between pre-
dicted and simulated values, a frequency analysis was performed.
Table 11 shows the difference between the values, root mean
square error (RMSE) and coefficient of variation of the room mean
square error (CV(RMSE)) between them. The majority of difference
was less than 2 min. The RMSE and (CV(RMSE)) between them
were 1.57 �C and 31.87%, respectively. Those results imply that
the deviation between is within acceptable range. In summary,
the prediction accuracy of the ANN model was validated to be
applied in the control algorithm.
4.2. Performance of the algorithms

The profiles of the indoor temperature and the cooling system
operation for selected three days among all periods used in this
study are shown in Fig. 11(a)–(c), when the conventional algo-
rithm, ANN-based algorithm I, and ANN-based algorithm II were
applied respectively. Each algorithm operated the cooling system
following the set temperatures for the occupied and unoccupied
period, respectively. Overall, the indoor temperature were main-
tained in the designated ranges (23–26 �C for the occupied period
and 25–28 �C for the unoccupied period) for most of the time.

For the clear understanding of the difference of the indoor tem-
perature and cooling system operation by three algorithms, Fig. 12
(a)–(c) shows the profiles of the indoor temperature and operation
of the cooling system for an extracted period from 7:00 to 9:00 A.
M. on August 7. The conventional algorithm, which applied the set-



Table 10
ANOVA test results for linear relationship.

Variables Unstandardized coefficients t Sig. ANOVA

B Std. Error

(Constant) 0.388 0.21 1.83 0.07 F(98,1) = 987.81
Simulated value (Mi) 0.941 0.03 31.43 0 Sig. = 0.00, r2 = 0.9097

Table 11
Frequency analysis and deviation.

Difference range [�C] 0 < X < 1 1 < X < 2 2 < X < 3 3 < X < 4 4 < X < 5 X > 5
Frequency [%] 24 12 6 2 0 1
Difference range [�C] X = 0 RMSE = 1.57 �C (CV(RMSE)) = 31.81 %
Frequency [%] 11
Difference range [�C] �1 < X < 0 �2 < X < �1 �3 < X < �2 �4 < X < �3 �5 < X < �4 X > �5
Frequency [%] 28 7 5 2 2 0

J.W. Moon et al. / Applied Thermal Engineering 113 (2017) 1290–1302 1299
back temperature exactly at the onset of the unoccupied period,
changed the operating range of the cooling system at 8:00 A.M, fol-
lowing which the cooling system entered the setback operating
range (25–28 �C). Thus, the indoor temperature was effectively
conditioned between 23 �C and 26 �C during the occupied period.
However, the temperature was lower than the lower threshold of
the setback operating range for a certain duration after the onset
of the unoccupied period, leading to unnecessary energy
consumption.

ANN-based algorithms I and II calculated TIMPSBT to 25 �C
(lower threshold of the setback operating range) and 26 �C (upper
threshold of the normal range) as 2 and 4 min, respectively.
Accordingly, the algorithms set the temperature to that within
the setback range before the onset of the unoccupied period.
Because of this early application of the setback temperature, the
cooling system was stopped, and the indoor temperature began
to increase in the later part of the occupied period in the morning.
The indoor temperature was closer to the target temperature
(25 �C and 26 �C for ANN-based algorithms I and II, respectively).

Table 12 summarizes the percentages of time period (PTP), in
which the indoor temperature was out of the targeted temperature
range, when the indoor temperature was controlled by each con-
trol algorithm. During the unoccupied period (8:00 A.M. to
6:00 P.M), the conventional algorithm yielded the largest PTP,
but differed non-significantly by only 0.08% and 0.11% when com-
pared with the two ANN-based algorithms.

This insignificant difference is attributable to two reasons. First,
the performance over the entire unoccupied period was compared
although the performance differed only once, around 8:00 A.M.
Thus, these percentages are not truly representative of the perfor-
mance of the algorithms. Second, the normally recommended set-
back operating range (25–28 �C) did not differ significantly from
the normal operating range (23–26 �C). If this difference was lar-
ger, the performance of the algorithms would differ more
significantly.

To further clarify the difference among the performance of the
algorithms, the PTP in extracted periods of the tests were com-
pared. Fig. 13 depicts the time period (TP) in which the indoor tem-
perature was out of the targeted temperature range, when the
indoor temperature was controlled by each control algorithm.
The TP was summed for the occupied period (before setback) and
unoccupied period (after setback). Test data for days when the
indoor temperature was naturally conditioned within the operat-
ing range without cooling operation was excluded from the
analysis.

Here, the TP before setback is the total duration in which the
temperature exceeded 26 �C (upper threshold of the normal oper-
ating range) in the last cycle during the occupied period of each
day. Similarly, the TP after setback is the total duration in which
the temperature was lower than 25 �C (lower threshold of the set-
back operating range) in the first cycle during the unoccupied per-
iod of each day.

During the occupied period, the conventional algorithm did not
create any TP in the last cycle of temperature changes. By contrast,
ANN-based algorithms I and II generated TP (>26 �C) lasting 3 and
11 min, respectively.

The conventional algorithm and ANN-based algorithms I and II
generated TP (<25 �C) lasting 88, 29, and 3 min, respectively. Thus,
the total TP (>26 �C and <25 �C) on the analyzed days were 88, 32,
and 13 min when the conventional algorithm and ANN-based algo-
rithms I and II were used respectively. These results imply that
ANN-based algorithm II, which employs TIMESBT to the upper
threshold of the normal range, is the most appropriate to control
the indoor temperature within the target range.

The amount of heat removed by the cooling system is summa-
rized in Table 13. During the occupied period (00:00–08:00 A.M.),
the conventional algorithm removed the largest amount of heat
(789 kW h) from the indoor environment, followed by ANN-
based algorithms I (754 kW h) and II (740 kW h). This is because
the conventional algorithm maintained the temperature within
the normal operating range throughout the occupied period. Com-
pared with the conventional algorithm, the two ANN-based algo-
rithms reduced heat removal by 4.4% and 6.2%.

By contrast, between 08:00 A.M. and 6:00 P.M, the two ANN-
based algorithms removed 0.1% and 0.4% more heat than did the
conventional algorithm. The total heat removed by the conven-
tional algorithm and ANN-based algorithms I and II were 3102,
3069, and 3063 kW h, respectively.

In general, the amount of heat removal by the cooling system is
closely related to the amount of cooling energy consumption. The
algorithm which removed more heat from the indoor environment
would consume more energy for cooling. Thus, ANN-based algo-
rithm II, which entailed the least heat removal, presented a poten-
tial to be the most energy-efficient thermal control algorithm. This
reduction in heat removal would be more significant if a higher
setback operating range is applied.
5. Conclusion

In this study, prediction models were developed to determine
the optimal onset time of the setback temperature of a building
during the occupied period in cooling season. Control algorithms
employing a prediction model were developed to keep indoor tem-
perature within targeted ranges ensuring energy efficiency. The
summary of findings is as follows.
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Fig. 11. Profile of temperature variation and cooling system operation for selected three days (August 6–August 8).
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Fig. 12. Profile of temperature variation and cooling system operation for a
extracted period (7:00–9:00 A.M., August 07).

Table 12
Percentages of time period (PTP) that does not meet targeted indoor temperature
ranges.

Time Conventional
algorithm [%]

ANN-based
algorithm I [%]

ANN-based
algorithm II [%]

0:00–8:00 6.59 6.57 7.78
8:00–18:00 9.65 9.57 9.54
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Fig. 13. Time period that does not meet targeted indoor temperature range.

Table 13
Amount of heat removal.

Time Conventional
algorithm [kW h]

ANN-based
algorithm I [kW h]

ANN-based
algorithm II [kW h]

0:00–8:00 789 754 740
8:00–18:00 2313 2315 2323
Total 3102 3069 3063
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(1) Correlation analysis between the input neurons and the out-
put neuron of the initial ANN model revealed strong linear
correlations of TEMPIN and TEMPDIF with TIMPSBT. Thus, the
modified initial ANN model used TEMPIN and TEMPDIF as
the input variables.

(2) The RMSE analysis of ANN-model-predicted values and sim-
ulated values showed that the optimal number of hidden
layers, number of hidden neurons, learning rate, and
moment were 1, 7, 0.6, and 0.7, respectively. The optimized
ANN model that employed these values had high prediction
accuracy (R2 > 0.9097). (Q1-8)

(3) The ANN-based control algorithms could control the indoor
temperature within target ranges. Two ANN-based algo-
rithms predictively controlled the cooling system with pre-
determined setback application. Although the two ANN-
based algorithms slightly increased the duration of the time
period (TP), in which the indoor temperature was out of the
targeted temperature range during occupied periods, they
significantly reduced the TP during unoccupied periods. In
particular, ANN-based algorithm II, which employs TIMESBT
to upper threshold of the normal range, yielded the best
performance.

(4) The predictive controls improved the cooling energy effi-
ciency of the building. ANN-based algorithm II effectively
reduced the amount of heat removed by the cooling system
and was the most energy-efficient thermal control algo-
rithm. If a higher setback operating range is applied, the
amount of reduction in heat removal would be more
significant.

In this study, the performance of the algorithms was evaluated
through one-dimensional (i.e., air temperature within the analysis
space and the temperature on each surface were assumed to be
uniformly identical) simulations in which limited boundary condi-
tions were applied to an imaginary building. Future studies involv-
ing actual field measurements, which can reflect real
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thermodynamics and air flow, would be useful in validating the
applicability of the control algorithm.

Also, further examinations about energy and mass balance
should be performed in future studies, since this study provided
simple amount of heat removal from space to outdoor environ-
ment according to the application of three control algorithms
based on the boundary conditions of computer simulations. In
order to analyze energy transfer between buildings and outdoor
surroundings, theoretical and detailed discussions needs to be pro-
vided based on various thermal systems, where energy and mass
balance occurred.
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