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H I G H L I G H T S

• Cost-effective algorithm was developed for the control of VRF heating system.

• ANN model was embedded in the algorithm to determine the cost-effective operation.

• ANN stably predicted the cost for space heating.

• Proposed algorithm saved the heating cost compared to the conventional method.
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A B S T R A C T

This study aims to develop a control algorithm that can operate an intermittently working variable refrigerant
flow (VRF) heating system in a cost-effective manner. An artificial neural network (ANN) model, which is de-
signed to predict the heating energy cost during the next control cycle, is embedded in the control algorithm. By
comparing the predicted energy costs for the different setpoint combinations for the system parameters, such as
the air handling unit (AHU) supply air temperature, condensing warm fluid temperature, condensing warm fluid
amount, and refrigerant condensing temperature, the control algorithm can determine the most cost-effective
setpoints to optimally operate the heating system. Two major processes are conducted—development of the
predictive control algorithm in which the ANN model is embedded, and performance tests in terms of prediction
accuracy and cost efficiency using computer simulation. Results analysis reveals that the ANN model accurately
predicts the energy cost, presenting a low coefficient of variation of the root mean square error value (7.42%)
between the simulated and predicted results. In addition, the predictive control algorithm significantly saves on
the heating energy cost by as much as 7.93% compared with the conventional heuristic control method. From
the results analysis, the ANN model and the control algorithm show the potential for prediction accuracy and
cost-effectiveness of the intermittently working VRF heating system.

1. Introduction

A key objective in the design of enclosed spaces is the provision of a
comfortable indoor environmental quality (IEQ). When an appropriate
IEQ is provided, occupants feel comfortable, healthy, and safe, with
increased attentiveness and productivity [1]. Thermal comfort (TC) is
one of the important factors that determine the IEQ. To provide ap-
propriate TC, a thermal conditioning process using equipment such as
heating and cooling systems needs to be properly employed.

Sophisticated thermal control systems and strategies can support a
comfortable and energy-efficient system operation. A variable re-
frigerant flow (VRF) system, which is an advanced type of centralized
system, has been increasingly applied to condition the indoor thermal
environment in recent mid- to high-rise buildings. A VRF system is
designed to properly control buildings that have a wide load variation,
such as office rooms, commercial buildings, and hotels. Since the re-
frigerant flow rate to multiple indoor units is determined by electronic
expansion valves, each zone can operate individually by a partial
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heating load. Actively responding to the load variation, the VRF system
is able to control the system more energy-efficiently, proving a com-
fortable indoor thermal environment [2]. Section 2 provides detailed
information regarding the VRF system.

Despite the advantages, there is a principal issue to be addressed for
more appropriate control of the VRF system. The setpoints of the VRF

system parameters have been determined in a heuristic manner. The
setpoints of the air handling unit (AHU) supply air temperature
(tSA_SET), the condensing warm fluid temperature (tCF_SET), the con-
densing warm fluid amount (VCF_SET), and the refrigerant condensing
temperature (tRF_SET) are generally set as constant values without cost-
effective consciousness. Under this circumstance, the opportunity for

Nomenclature

BGR boiler gas consumption rate, kWh
CAPFT heating capacity ratio according to the entering warm

fluid and inlet wet-bulb air temperatures, dimensionless
DX AHU direct expansion air handling unit
CMH flow rate of warm fluid
COPREF reference coefficient of performance, 4.787W/W
COSTTOT total energy cost for heating, Korean Won
EA exhausted air
EIRFLPM electric input ratio according to the flowrate of warm

fluid, dimensionless
EIRFPLR electric input ratio according to the part load ratio, di-

mensionless
EIRFRC electric input ratio according to the refrigerant condensing

temperature, dimensionless
EIRFT electric input ratio according to the entering warm fluid

and inlet wet-bulb air temperatures, dimensionless
etot fan total efficiency, dimensionless
FF flow fraction
m current air mass flow, kg/s
fpl fraction of full load power, dimensionless
gwlpm amount of warm fluid, L/min
LOADHEAT average heating load for last control cycle, kW
LR learning rate
m air flow, kg/s
mdesign design (maximum) air flow, kg/s
MO momentum
NHL number of hidden layers
NHN number of hidden neurons
NIN number of input neurons

NON number of output neurons
OA outdoor air
QOUTUNT reference capacity of the outdoor unit, kW
Qtot fan power, W
OUER sum of evaporation heat loss of outdoor units, kWh
PCT electric power of the pumps, kW
PLR part load ratio, %
POUTUNT electric power of the outdoor unit, kW
RA returned air
RC refrigerant condensing temperature, °C
SA supply air
tCF average condenser fluid temperature for last control cycle,

°C
tCF_SET setpoint of condensing warm fluid temperature, °C
tCUR_IA current indoor air temperature, °C
tIA average indoor air temperature of zones for last control

cycle, °C
tOA average outdoor air temperature for last control cycle, °C
tRF_SET setpoint of refrigerant condensing temperature, °C
tSA average supply air temperature of AHUs for last control

cycle, °C
tSA_SET setpoint of air handling unit supply air temperature, °C
tSETPOINT indoor setpoint temperature for the heating system, °C
VCF average condensing warm fluid amount for control cycle,

L/min
VCF_SET setpoint of condensing warm fluid amount, L/min
X inlet air wet-bulb temperature entering the DX coil in the

AHU, °C
Y entering warm fluid temperature
ρair air density at standard conditions, kg/m3

ΔP fan design pressure increase, Pa

Fig. 1. Diagram of the direct expansion (DX) air handling unit (AHU)-water source VRF.
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more cost-effective space thermal conditioning in the current control
method is missing.

This study aims at developing a predictive control algorithm that
can operate the VRF heating system based on the consideration of cost-
effectiveness. An artificial neural network (ANN) model, which predicts
the heating energy cost during the next control cycle for the different
setpoints of the control variables was developed and embedded in the
control algorithm. Using the predicted energy cost for different setpoint
combinations, the control algorithm can determine the variables’ op-
timal setpoints for operating the heating system.

Two major processes are conducted to propose the cost-effective
predictive heating system control method. The first process is to de-
velop a predictive control algorithm in which the ANN model is em-
bedded, and the second process is to test its performance in comparison
with the conventional heuristic control method, which uses fixed values
for the control variables (e.g., 38 °C for the supply air temperature). The
potential of the optimally determined operating strategy is presented
through a results analysis.

2. Review of the VRF heating system and the ANN

2.1. VRF heating system

Fig. 1 shows the direct expansion (DX) AHU water source VRF,
which is composed of an AHU, outdoor units, a boiler, and pumps. In
the system, the heat source of the VRF system is the hot water produced
from the boiler during the heating mode. This means that the boiler
provides hot water to the outdoor unit, i.e., evaporator in the heating
mode, as the heat source. The outdoor unit (evaporator) and DX coil
(condenser) is connected with the refrigerant pipe, through which the
refrigerant circulates for the phase change between liquid and gas.
Therefore, the heat pump (VRF) pumps heat from the outdoor unit
(evaporator) to DX coil (condenser), not from boiler to DX coil. The
difference from the conventional AHU system is that hot water is not
used in the AHU heating coil, but refrigerant is directly provided to heat

the conditioned air.
Table 1 summarizes recent studies about the VRF system and ap-

plication. In these studies, the VRF system presents the potential to
control the indoor thermal environment more energy-efficiently, sup-
porting a comfortable indoor thermal environment. The VRF heating
system can improve energy efficiency because it can properly respond
to a wide load variation. Each zone in a building controls the amount of
heat supply more dynamically by individual operation of an electronic
expansion valve in the indoor unit.

The settings of the system variables are related to the outdoor units,
the boiler, the pumps for circulating condenser fluids, and the fans in
the AHU. Eqs. (1)– (4) present the electricity and gas consumption by
the outdoor units [9–11], boiler, pumps [9,12], and fans in the AHU
[9,13,14], respectively. The coefficients in Eqs. (1-1)–(1-5) are derived
from both data obtained from field measurements and a technical data
book [11]. Similarly, the coefficients in Eqs. (3) and (4-1) are derived
from field measurement data from the test building described in Section
5. Thus, these coefficients can only be applied to the particular system
installed in the test building.

= × × × ×
× ×

P (kWh) Q 1/COP CAPFT EIRFT EIRFPLR
EIRFLPM EIRFRC

OUTUNT OUTUNT REF

(1)

=CAPFT(dimensionless) 1.4926264835 0.01393254X 0.0001548X2

(1-1)

= + +
+

EIRFT(dimensionless) 0.8002364 0.0179363X 0.0009182X
0.01341544Y 0.00108534Y 0.0022828XY

2

2

(1-2)

= +EIRFPLR(dimensionless) 6.025738PLR 22.38675PRL 31.6677PLR
14.3232PLR

2 3

4 (1-3)

=EIRFLPM (dimensionless) 1.02503 0.000056778CMH (1-4)

= +EIRFRC (dimensionless) 5.3521 0.24069RC 0.00197RC2 (1-5)

Table 1
Previous studies about VRF system.

Reference(s) Author(s) Outcomes

[3] Yun, Y.Y.; Lee, J.H.; Kim,
H.J.;

A load responsive control of the evaporating control in the VRF system, which aims to reduce the cooling energy consumption of the
VRF system, has been developed
Increasing the evaporating temperature can reduce the electricity consumption of the VRF system without impairing the energy
efficiency of the VRF system. This simulation results demonstrate that the annual cooling energy consumption is lowered

[4] Zang, R. et al. The model categorizes the operations of the VRF-HR system into six modes based on the indoor cooling/heating requirements and the
outdoor unit operational states, and develops particular algorithms for each mode to address various control logics
The model has been adopted in the official release of the EnergyPlus simulation program since Version 8.6

[5] Li, Y.M.: Wu, J.Y.: In order to evaluate the energy features of the VRF system, a new energy simulation module is developed and embedded in the
dynamic energy simulation program, EnergyPlus. And the indoor thermal comfort of the building in winter and the setting
temperature of the system are analyzed
If the HR-VRF system adopts the same temperature control method as the heat pump VRF (HP-VRF) system, the HR-VRF system
promises 15–17% energy-saving potential, when compared to the HP-VRF system

[6] Kim, D.S. et al. A comparison study between the simulation results of VRF and RTU-VAV models is made to demonstrate energy savings potential of
VRF systems
The simulation results show that the VRF systems would save around 15–42% and 18–33% for HVAC site and source energy uses
compared to the RTU-VAV systems

[7] Aynur, T.N. et al. The secondary components (indoor and ventilation units) of the VRF AC system promised 38.0–83.4% energy-saving potential
depending on the system configuration, indoor and outdoor conditions, when compared to the secondary components (heaters and
the supply fan) of the VAV AC system
Overall, it was found that the VRF AC system promised 27.1–57.9% energy-saving potentials depending on the system configuration,
indoor and outdoor conditions, when compared to the VAV AC system

[8] Lee, J.H.; Im, P.; Song,
Y.H.;

This Study was carried out field test and simulation evaluation of variable refrigerant flow systems performance
The field test result showed that when energy consumptions of two systems were compared at the same outdoor conditions using the
weather-normalized model, the VRF system exhibited energy reduction during cooling operation using simulations showed that the
VRF system reduced more energy consumption
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=BGR (kWh) OUER/0.99 (2)

= +
+

P (kW) 0.00000000001gwlpm 0.0000008gwlpm 0.0017gwlpm
5.5587

CT
3 2

(3)

=FF(kg/s) m/mdesign (4)

= + +f (dimensionless) 0.0023 0.684FF 1.8832FF 2.2FFpl
2 3 (4-1)

=Q (W) f m P/(e )tot pl design tot air (4-2)

From the factor analysis using these equations, the supply air tem-
perature from the AHU, the flow rate and temperature of the warm
condensing fluid, and the refrigerant condensing temperature were
found to be the important determinants for calculating the energy
consumption of the heating system. These values were selected as the
input variables for the ANN model.

2.2. Artificial neural network and applications

The ANN, which is an engineering analogy of the human neural

Table 2
Previous studies using the ANN for building thermal controls.

Reference(s) Author(s) Outcomes

[17,18] Yeo, M.S.; Kim, K.W.; Yang,
I.H.;

Two ANN models were developed for calculating the ascending and descending times of the current indoor temperature to the
designated setpoint temperatures
The calculated times were used to determine the optimal start and stop moments of the heating system at the opening and closing
periods of the office building

[19] Moon, J.W.; Jung, S.K. Two ANN models and two control algorithms were proposed to suggest the energy-efficient setback value and period for an
unoccupied period
These proposed algorithms showed better performance in terms of energy efficiency and thermal comfort than the conventional
algorithm

[20] Ben-Nakhi, A.E.; Mahmoud,
M.A.

An ANN model was developed to predict the optimal end of the setback moment (i.e., beginning of the normal period) of the
cooling system in the commercial buildings
The model predicted successfully, with strong correlation between the prediction results and the simulated results

[21] Morel, N. et al. Three ANN models were developed to predict future indoor temperature, outdoor temperature, and solar radiation, respectively
A domestic radiant heating system provided more comfortable thermal condition with improved energy-efficiency using these
predicted values

[22,23] Lee, J.Y. et al. An ANN model was proposed for operating a radiant under-floor heating system
The overshoots and undershoots of the indoor temperature out of the comfortable range were significantly reduced

[24–26] Moon, J.W. Three ANN models were developed for conditioning the indoor air temperature, humidity, and PMV of domestic buildings
ANN-based methods controlled the heating, cooling, humidifying, and dehumidifying systems, and provided a more comfortable
and stable thermal environment

[27,28] Argiriou, A.A. et al. An ANN model was developed for the optimal control of the hydronic heating systems in solar buildings
The proposed ANN-based method significantly reduced energy consumption for heating

[29] Abbassi, A.; Bahar, L. An ANN model was proposed to control an evaporative condenser
The ANN-based method reduced process errors compared to the existing PID controller

[30] Li, N. et al. ANN-based control strategy for a direct expansion air conditioning system was developed, which simultaneously considered
indoor air temperature and humidity
The ANN-base controller was able to control the indoor air temperature and humidity by changing the compressor speed and
supply fan speed

[31–33] Hikmet, E. et al. ANN-based prediction models were developed for operating a ground-coupled heat pump system
They provided accurate calculation results for the coefficient of performance of the ground-coupled heat pump system

[34] Chow, T.T. et al. ANN and Genetic algorithm (GA) was proposed in an incorporative manner for the optimal use of electricity and fuel by an
absorption chiller system
The ANN model accurately calculated the coefficient of performance of the system, the mass flow rated of diesel oil, and electric
power of the cooling water pump and chilled water pump

[35] Ferreira, P.M. et al. A predictive methodology was suggested for achieving energy saving and constant thermal comfort from an existing HVAC
system control experiment
The amount of energy saving reached over 50%

[36–40] Moon, J.W. et al. ANN-based models and algorithms were developed for the optimal control of a double skin façade depending on the external
climate, indoor air temperature, indoor occupancy rate, and opening conditions
The ANN model could respond to any external and internal environment changes, and maintain indoor thermal comfort to
control the heating or cooling systems

[41] Song, Z. et al. A velocity propagation method was proposed based on a dynamic compact zonal model for a data center, and the results from a
VPM zonal model and computational fluid dynamics (CFD) simulation were compared
The results showed that the air flow and temperature distributions were in good agreement with those obtained using the zonal
method and the CFD simulation results, which provided effective thermal control with limited monitoring of zonal temperature
and air flow

[42] Castilla, M. et al. The ANN-based model for approximating thermal comfort evaluation was suggested for economic benefits by reducing the
network sensor size for the real-time control of HVAC systems
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system and learning process, is an empirical model that learns from
experience and generalized data for prediction, pattern recognition,
function approximation, optimization, and association [15]. One of the
most popular and widely applied models is the multilayer feedforward
network [16]. The fundamental structure of the network is composed of
an input layer, hidden layer(s), and an output layer. Each layer can
contain a series of nodes according to the model requirements. Each
node in one layer is connected to every node in the next layer. Nodes
are connected to each other with specific weights. The outgoing values
of each node are weighted to have a different effect on the next node.
The weighted incoming values to the next node are summed and
transferred as an output of the current node. The identical process is
repeated until the nodes in the output layer produce the output.

ANNs have been increasingly applied to building environmental
controls. Various research efforts have dealt with ANN-based predictive
approaches to control thermal control systems, including heating,
ventilation, and air-conditioning (HVAC) systems, to improve indoor
TC and to reduce energy consumption. Table 2 summarizes recent re-
levant studies. From these studies, the ANN-based thermal control
methods present the potential for providing a comfortable thermal
environment with advanced energy efficiency. These advantages pro-
vide the fundamental basis for developing ANN-based the VRF system
control algorithm in this study.

3. Development process of the predictive model and control
algorithm

Two major processes were conducted for proposing the energy-ef-
fective predictive heating system control method. The first process was
to develop a predictive ANN model. The ANN model was developed for
predicting the energy cost during the next control cycle and its pre-
diction performance was tested using the measured data in the actual
building in the preceding research [3]. The second process was to de-
velop a control algorithm in which the ANN model was embedded.
Using the predicted results from the ANN model, the algorithm de-
termined the most cost-effective operating setpoints for the heating
system. In this study, the performance tests for the developed ANN
model and the control algorithm were conducted using computer si-
mulation for the prediction accuracy and energy efficiency in terms of
cost and consumed energy.

3.1. ANN model for predicting energy cost

In the preliminary study conducted by Park et al. [9], an ANN model
was developed to calculate the energy cost for the heating system
during the next control cycle, which in this study was assigned as 5min.
Fig. 2 shows the structure of the ANN model. The model is composed of
three layers—an input layer, a hidden layer, and an output layer. The
input layer is composed of ten input neurons, which are relevant
variables to determine the heating energy cost. They are: (1) the
average outdoor air temperature for the last control cycle (tOA); (2) the
average indoor air temperature of zones for the last control cycle (tIA);
(3) the average supply air temperature of AHUs for the last control cycle
(tSA); (4) the average condenser fluid temperature for the last control
cycle (tCF); (5) the average condensing warm fluid amount for the
control cycle (VCF); (6) the average heating load for the last control
cycle (LOADHEAT); (7) the setpoint of the AHU supply air temperature
(tSA_SET); (8) the setpoint of the condenser fluid temperature (tCF_SET);
(9) the setpoint of the condenser fluid amount (VCF_SET); and (10) the
setpoint of the refrigerant condensing temperature (tRF_SET). Table 3
summarizes the ranges of input variables, and the values were nor-
malized between 0 and 1 when they were applied to the ANN model.

Among these input variables, the first six variables are the results
during the last control cycle, which are measured, and cannot be
changed. On the other hand, the last four variables are the setpoints of
the heating system for the next control cycle. These setpoints are not

determined at the beginning moment of the control cycle, which will be
optimally determined in the control algorithm. The output of the ANN
model is used as a determinant in the control algorithm.

The number of hidden layers and hidden neurons are 1 and 15,
respectively. These numbers were determined as optimal in the pre-
liminary research [9], which produced the most accurate prediction
results. In that study, ANN models of 1–5 hidden layers with 15–25
hidden neurons were compared for their prediction performance. The
ANN model with 1 hidden layer and 15 hidden neurons showed the
most accurate prediction results.

In addition, the output of the ANN model is the total energy cost for
heating (COSTTOT), which is the sum of gas cost and electricity cost. The
gas and electricity costs were assumed to be 689 Koreanwon/m3 (ap-
proximately 0.62 US$/m3) and 143 Korean won/kWh (approximately
0.13 US$/kWh), respectively, for the year 2017.

A sigmoid function and a pure linear function were used as transfer
functions for hidden neurons and the output neuron, respectively. The
initial learning rate (LR) and momentum (MO) were 0.5 and 0.4, re-
spectively, which were found as optimal values in the preliminary study
[9]. A total of 1000 training data sets were applied to train the ANN
model. In addition, the sliding-window method was used for the data
management of the training data sets; thus, when a new set was ac-
quired, the oldest set was removed.

Fig. 2. Structure of the ANN model.
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3.2. Model predictive control algorithm

The ANN model was embedded in the control algorithm, which was
developed using MATLAB (MathWorks, Natick, MA, US) software and
its neural network toolbox. Fig. 3 shows the flow of the algorithm. The
control algorithm starts its function by collecting the outdoor and in-
door thermal conditions, followed by collecting the heating system
operation conditions during the previous control cycle, which will be
used in the ANN model.

If the current indoor temperature (tCUR_IA) is lower than the indoor
setpoint temperature (tSETPOINT), the embedded ANN model predicts the
energy cost (COSTTOT) for the next control cycle for the combinations of
the four setpoints of the heating system—tSA_SET, tCF_SET, VCF_SET, and
tRF_SET. The energy costs for the different setpoint combinations are
compared, and the optimal combination is found. The heating system
will then work following the optimal setpoints. Fig. 4 conceptually
presents the relevant part in the control algorithm that predicts, com-
pares, and finds the optimal setpoint combination. The step size in
Fig. 4 for assigning values to each variable was 1 °C, 1 °C, 100 L/min,
and 1 °C for TEMPSA_SET, TEMPCF_SET, AMOUNTCF_SET, and TEMPRF_SET,
respectively.

4. Performance tests

The performance of the predictive control algorithm embedding the
ANN model was tested in comparison with the conventional algorithm.
The performance evaluation was conducted to validate the prediction
accuracy, results of the setpoint determination, and the amount and
cost of the heating energy consumption. Table 4 summarizes the set-
points of the control variables for the conventional and predictive al-
gorithms. The conventional algorithm used the fixed setpoints for the
control variables of the heating systems, which is the strategy that is
normally applied in the field. Meanwhile, the predictive algorithm
considered a certain range for each control variable, and determined
the most cost-effective combination using the prediction results from
the ANN model. Thus, the values would be varied based on the de-
termination by the predictive control algorithm.

The test building for the performance tests was an R&D center lo-
cated in Seoul, South Korea (37.33°N latitude and 126.58°E longitude).
It is an 11-story office building (Fig. 5) constructed in 2015 that covers
a gross floor area of 22,660m2. Offices, meeting rooms, and a lobby
comprise the standard floor from the first to the tenth level. The
monitoring variables are summarized in Table 5.

The building is equipped with a DX AHU water source VRF system.
The test building was divided into 33 thermal zones using 11 AHUs and
37 outdoor units. Two to four outdoor units were connected to one
AHU. AHUs and their covering zones are summarized in Table 6.

The performance tests were conducted using computer simulation.
Three software programs—EnergyPlus (U.S. DOE) [44], MATLAB [45],
and Building Controls Virtual Test Bed (BCVTB, U.S. DOE) [46] were
applied in an incorporative manner for modeling the building and the

VRF system. Fig. 6 shows an overall diagram of the model including the
data exchange. EnergyPlus software was used to model the VRF heating
control system and produce the indoor thermal conditions. MATLAB
software supplied the neural network (NN) toolbox, which was used to
develop the ANN predictive model and control algorithm. The model
and algorithm received the values for input neurons from EnergyPlus,
and sent the system operating setpoints, such as tSA_SET, tCF_SET, VCF_SET,
and tRF_SET, to the VRF system in EnergyPlus. In addition, additional
functions were written for data management and storage. The BCVTB
was a middleware, which connected the AHUs and outdoor units in
EnergyPlus and the boiler, pumps, and control algorithm with the
predictive model in MATLAB. Through this connection, the data pro-
duced in both software programs, EnergyPlus and MATLAB, could be
transferred repeatedly.

The AHU discharge temperature setpoint was one of the main
control variables, and thus the AHU discharge temperature should be
maintained at the setpoint in each time-step, and the air flowrate
should be modulated to meet the heating load. However, the water
source VRF model in EnergyPlus was not able to maintain the AHU
discharge temperature at the setpoint, and thus a work-around was
implemented. Instead of using the water source VRF model, the air
source VRF model (Coil:Heating:DX) in EnergyPlus was used in the
system level; the plant level equipment, such as the boiler and pumps,
were modeled in MATLAB. Even though the air source VRF model was
applied, heat for evaporating refrigerant in the outdoor units was de-
signed to be supplied using the heated water from the boiler instead of

Table 3
Normalized range by input variables.

Input Normalized range

tOA −20 to 20 °C
tIA 15–30 °C
tSA 34–40 °C
tCF 15–25 °C
VCF 800–1800 L/min
LOADHEAT 0–300 kWh
tSA_SET 34–40 °C
tCF_SET 15–25 °C
VCF_SET 800–1800 L/min
tRF_SET 37–46 °C

Fig. 3. Flowchart of the control algorithm.
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using the outdoor air. Therefore, the E+ model could realize the
functions of the water source VRF system. The data exchange necessary
to link the EnergyPlus–MATLAB model, such as the warm fluid tem-
perature and flowrate, outdoor unit load, and energy consumption, was
achieved through the BCVTB, which is the middleware software al-
lowing users to couple different simulation programs for co-simulation.

The EnergyPlus–MATLAB model was validated and calibrated
against the three-month measured data in the actual R&D center. In
particular, the outdoor unit performance modeling requires three per-
formance curves: (1) the capacity modifier, as functions of the DX coil

inlet air temperature, entering fluid temperature, and flowrate; (2) the
energy input modifier, as functions of the DX coil inlet air temperature,
entering fluid temperature, and flowrate; and (3) the energy input
modifier, as a function of the part load ratio.

After the calibration process, the coefficient of variation root mean
square error (CVRMSE) of the outdoor unit energy consumption be-
tween simulated and measured data was 15.2% [47], as shown in
Fig. 7, indicating that the model is reliable enough to be used for this
study, because it was less than the acceptable value of 30.0% that is
suggested by ASHRAE (the American Society of Heating, Refrigerating
and Air-Conditioning Engineers) Guideline 14: Measurement of energy
and demand savings [48]. Thus, the validity of the simulation model is
verified.

Fig. 4. Scheme to find the optimal setpoint combination.

Table 4
Setpoints of the control variables.

Control variables Control algorithms

Conventional Predictive

tSA_SET 38 °C 34–40 °C
tCF_SET 20 °C 15–25 °C
VCF_SET 1666 L/min 800–1800 L/min
tRF_SET 43 °C 37–46 °C

Fig. 5. The test building front view [43].

Table 5
Monitored variables and measuring time.

Variables The unit of measuring time

Indoor dry-bulb temperature 5min
Outdoor dry-bulb temperature 5min
Outdoor relative humidity 5min
Supply air dry-bulb temperature 5min
Condenser fluid supply temperature of boiler 5 min
Condenser fluid volume flow rates 5min
Energy used cost by the outdoor units 1 h
Energy used cost by the boiler 1 h
Energy used cost by the pumps 1 h
Energy used cost by the fans in the AHU 1 h

Table 6
AHU and zone composition.

VRF AHU number Zones

1 1F_Lobby
2 1F_Conference Room, 2F_ Conference Room
3 2F_Lobby
4 3F_ ZoneA, 4F_ ZoneA, 5F_ ZoneA, 6F_ ZoneA
5 3F_ ZoneB, 4F_ ZoneB, 5F_ ZoneB, 6F_ ZoneB
6 3F_ ZoneC, 4F_ ZoneC, 5F_ ZoneC, 6F_ ZoneC
7 3F_ ZoneD, 4F_ ZoneD, 5F_ ZoneD, 6F_ ZoneD
8 7F_ ZoneA, 7F_ ZoneC, 8F_ ZoneA, 8F_ ZoneC, 9F_ ZoneA, 9F_

ZoneC
9 7F_ ZoneB, 8F_ ZoneB, 9F_ ZoneB
10 7F_ ZoneD, 8F_ ZoneD, 9F_ ZoneD
11 10F_ ZoneA

J.W. Moon et al. Applied Thermal Engineering 149 (2019) 1522–1531

1528



5. Results analysis

The performance evaluation was conducted in terms of three cate-
gories—prediction accuracy of the ANN model, results of the setpoint
determination, and amount and cost of the heating energy. The energy
amount and cost was calculated for the case where the indoor tem-
perature followed well to the designated setpoint temperature (21 °C).
The indoor temperature was stabilized at 21 °C following the indoor
setpoint temperature because the amount of heat supply to the indoor
space is adjusted by the supply air temperature and amount for sa-
tisfying the setpoint temperature.

Fig. 8 shows the difference between simulated energy cost and the
predicted energy cost. In most cycles, heating was not required in the
test building. The number of cycles when the heating system worked
was 1283 times, which means 6415min. This is 7.55% of the total test
period, which was 58 days in winter, from January 1st to February
28th. The average energy cost for each control cycle was
5317.6 Koreanwon (US$ 4.78) and 5043.2 Koreanwon (US$ 4.54) for
the simulation and prediction, respectively. The difference between the
simulated and predicted energy cost was higher at the earlier test
period, then reduced after a certain period. The maximum difference
was 1680 Koreanwon (US$ 1.53) and the average difference was 274.4
Korean won (US$ 0.25) for the 5-min control cycle. The CVRMSE be-
tween the simulated and predicted results was 7.42%. This number is
under 30%, which is regarded as an acceptable value by ASHRAE
Guideline 14: Measurement of energy and demand savings [48]. Thus,
the prediction accuracy of the ANN model in this study is verified.

Fig. 9 shows how the control algorithm, which embedded the ANN
model and used the prediction results, determined the optimal setpoints
for the heating system operation. For most of the period that required

the heating operation, the tSA_SET, tCF_SET, VCF_SET, and tRF_SET were
stably set to 38 °C, 25 °C, 1600 L/min, and 40 °C, respectively, except
the early test period, during which the ANN model tuned itself to the
simulation model. The most cost-efficient tSA_SET was the same as that of
the conventional algorithm. On the other hand, the other three vari-
ables presented different setpoints to the conventionally assigned va-
lues (as previously given in Table 3). Although the optimal values are
constant in this application, the values from the algorithm will vary in
diverse applications with different backgrounds (e.g., different gas or
electricity costs as well as different system or building capacities),
which is due to the iterative self-training process of the ANN model.
Following the variable setpoint values for the new environment, the
building could be controlled in the most cost-efficient manner.

Fig. 10 shows the amount of energy consumption by the conven-
tional and predictive algorithms. When the predictive algorithm was
applied, the amount of gas consumption was increased. The amount of
gas was 1666m3 and 2163m3 by the conventional and predictive al-
gorithms, respectively. The electricity was reduced by the predictive
algorithm. The amount of electricity was 41,120 kWh and 34,819 kWh
by the conventional and predictive algorithms, respectively.

Fig. 11 shows the total energy cost by the conventional and predictive
algorithms. The predictive algorithm saved significant energy cost caused
by the optimal setpoints. This is because the predictive algorithm found the
most cost-efficient setpoint combination for the control variables. Compared
with the conventional method, which employed fixed values 38 °C, 20 °C,
1666 L/min, and 43 °C for tSA_SET, tCF_SET, VCF_SET, and tRF_SET, respectively,
the cost savings by the predictive algorithm reached 7.93%, which was
from 7,027,777Koreanwon (US$ 6,317.30) to 6,470,389Koreanwon (US
$ 5,816.20). The amount of savings was 557,388Koreanwon (US$ 501.00).
The significant savings was through the reduction of electricity consump-
tion, which was 15.33% (901,080Koreanwon, US$ 810.00) from
5,880,224Koreanwon (US$ 5,825.70) to 4,979,144Koreanwon (US
$ 4,475.80). On the other hand, the gas cost was slightly increased by
343,692Koreanwon (US$ 308.90).

Fig. 6. The simulation method using the three software programs.
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The savings effect can be differentiated when the cost of gas and
electricity is changed. If the gas cost rises to 1807 Korean won/m3

(approximately 1.62 US$/m3) from 689 Koreanwon/m3 (approxi-
mately 0.62 US$/m3), which was assumed in this study, no cost savings
effect occurs. This means that the cost savings ratio decreases by as
much as 0.79% per 10 cents increase of gas cost. However, using the
iterative self-training process, the ANN model will reflect the changed
energy cost and predict differently the energy cost for system operation.
Thus, the result from the algorithm will propose different combinations
of the variable setpoint values, which is the optimal solution in terms of
cost.

Fig. 12 shows the energy cost for each component of the heating
system. The electricity cost was related to the outdoor units, fans, and

pumps, while the gas cost was determined only by the boilers. The most
significant component determining the energy cost was the outdoor
units, which consumed approximately 73.3% and 65.7% of the total
cost for the conventional and predictive algorithm, respectively. The
savings percentage for the outdoor unit was 17.53% by the predictive
algorithm. Since the outdoor units only use electricity, this savings di-
rectly impacted the electricity and cost savings.

On the other hand, as also explained in Figs. 10 and 11, the pre-
dictive algorithm increased the gas cost for the boiler. The cost was
1,147,553 Koreanwon (US$ 1031.50) and 1,491,245 Koreanwon (US
$ 1340.50) for the two algorithms. The cost increase in the boiler is
related to the decrease of electricity consumption in the outdoor unit.
The algorithm was designed to find the most cost-effective setpoints. As
shown in Fig. 12, the most significant energy-consuming component
was the outdoor units. Thus, the predictive algorithm determined to
operate the heating system in the manner of reducing the electricity
consumption in the outdoor unit to save the total energy cost. In ad-
dition, the condenser heating rate through the refrigerant condensation
was determined by adding the sum of the outdoor unit evaporator heat
transfer rate for the refrigerant evaporation to the sum of outdoor unit
electricity consumption. As mentioned earlier, the algorithm de-
termined to reduce the electricity consumption in the outdoor units.
Therefore, to maintain the same condenser heating rate through the
refrigerant condensation between the conventional and optimized
cases, the amount of heat supply from the boiler, which is the same as
the sum of the outdoor unit evaporator heat transfer rate, should have
been increased, resulting in the increase of gas consumption in the
boiler.

6. Conclusions

In this study, a predictive algorithm was developed to cost-effec-
tively operate an intermittently working VRF heating system. The al-
gorithm determined the optimal setpoints for the heating system using
an ANN model, which was designed to calculate the heating energy cost
for the next control cycle. Using computer simulation, the performance
of the predictive model and algorithm was tested in terms of the pre-
diction accuracy of the ANN model, results of the setpoint determina-
tion, and amount and cost of the heating energy. A summary of our
findings is as follows.

(1) The prediction accuracy of the ANN model was proved by the low
CVRMSE value between the simulated and predicted results. The
CVRMSE was 7.42%, which is under the 30% level suggested as an
acceptable value by the ASHRAE Guideline. Thus, the ANN model
proved its potential to be applied in the control algorithm.

Fig. 9. Setpoints of variables determined by the predictive control algorithm.
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(2) The predictive control algorithm stably determined the optimal
setpoints for the heating system. For most periods, tSA_SET, tCF_SET,
VCF_SET, and tRF_SET were stably set to 38 °C, 25 °C, 1600 L/min, and
40 °C, respectively.

(3) The predictive control algorithm significantly saved on the heating
energy cost. The total cost savings reached 7.93%. In particular, the
significant savings was through the reduction of the electricity
consumption in the outdoor units, which was 15.33%.

(4) On the other hand, the gas cost was increased in the boiler. The gas
cost increase was to increase the amount of heat supply to the
condenser fluid in the boiler in order to maintain the amount of
heat supply through the refrigerant condensation. The increased
amount was 497m3, which was from 1666m3 by the conventional
algorithm, to 2163m3 by the predictive algorithm.

From the results analysis, the ANN model and the control algorithm
presented the prediction accuracy and potential to control the inter-
mittently working VRF heating system in a cost-effective manner.
Further study is needed to test the control algorithm in actual buildings.
In addition, an integrated control algorithm for the cooling system, as
well as the heating system, needs to be developed to provide a more
comfortable and cost-effective thermal environment.
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