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Abstract: The type of occupant activities is a significantly important factor to determine indoor
thermal comfort; thus, an accurate method to estimate occupant activity needs to be developed.
The purpose of this study was to develop a deep neural network (DNN) model for estimating the
joint location of diverse human activities, which will be used to provide a comfortable thermal
environment. The DNN model was trained with images to estimate 14 joints of a person performing
10 common indoor activities. The DNN contained numerous shortcut connections for efficient training
and had two stages of sequential and parallel layers for accurate joint localization. Estimation
accuracy was quantified using the mean squared error (MSE) for the estimated joints and the
percentage of correct parts (PCP) for the body parts. The results show that the joint MSEs for the
head and neck were lowest, and the PCP was highest for the torso. The PCP for individual activities
ranged from 0.71 to 0.92, while typing and standing in a relaxed manner were the activities with
the highest PCP. Estimation accuracy was higher for relatively still activities and lower for activities
involving wide-ranging arm or leg motion. This study thus highlights the potential for the accurate
estimation of occupant indoor activities by proposing a novel DNN model. This approach holds
significant promise for finding the actual type of occupant activities and for use in target indoor
applications related to thermal comfort in buildings.

Keywords: thermal comfort; deep neural network; human joint estimation; indoor activity

1. Introduction

The indoor environment quality (IEQ) in buildings is related to the quality of life,
health, and productivity [1–3]. The main factors composing the IEQ are classified into
thermal comfort, indoor air quality (IAQ), and visual comfort [4,5]. Among these factors,
the degree of thermal comfort is decided by predicted mean vote (PMV), one of the thermal
comfort indices proposed by Fanger [5]. PMV considers six physical factors and two
individual factors of metabolic rate and clothing insulation. While physical factors can be
measured simply with sensors, the individual factors are difficult to measure objectively
and accurately.

One of these individual factors, the metabolic rate, is the real-time rate of change in the
heat production of the human body. The heat production of a human is mostly determined
by activity, and the amount of produced heat varies greatly by activity: “Sleeping” (100 W),
“light work” (200 W), “walking” (300 W), “jogging” (800 W) [6]. In other words, the
metabolic rate can be estimated if the activity that has a decisive influence on the heat
production is identified in real-time.
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However, unlike other environmental factors, activities of occupants are difficult to
measure simply and accurately with sensors. Therefore, the metabolic rate is generally
inferred from the measurement of indirect factors that change in response to human activity,
such as the body surface temperature measured using an infrared camera [7,8]. However,
in order to estimate the PMV for thermal comfort, it is necessary to develop a fundamental
measuring method of the metabolic rate. Therefore, to estimate the metabolic rate, a method
for identifying human activities in real-time is a promising approach.

A human activity estimation method being developed continuously not only in archi-
tecture but also in the computer vision field classifies human activities by learning image
patterns [9–12]. Automatic analysis of human behavior from an image is an important but
challenging problem. The human activity estimation method estimates the location of each
joint of a person from an image and then uses this information to analyze the behavior
of the target person. In classical approaches, researchers have proposed hand-crafted
features specifically designed for certain attributes of joints in an input image. For example,
a histogram of oriented gradients (HOG) [9] is a widely used feature for human pose
detection. Because a HOG is based on a gradient, it is robust to unexpected illumination
changes in the input image. A classifier is trained to learn the pattern of local features for
object recognition [9,10]. In such a framework, features and corresponding classifiers must
be carefully chosen for a target application.

By contrast, neural network-based models learn important features on their own from
training data rather than requiring a researcher to arbitrarily design the features. Several
attempts have been made to improve human activity estimation using neural networks.
Toshev and Szegedy [11] proposed DeepPose, a deep neural network (DNN), for human
activity estimation from an image, and this model is able to recognize various human
activities in images with complex backgrounds. The DeepPose study demonstrated the
potential of DNN for improving the activity estimation techniques. Each layer of a DNN
learns progressively better representations of the target object in an image. This property
allows one to identify features better from training data. Another interesting property of
the DNN-based approach is that it facilitates a holistic approach that uses not only local
features in local regions of an image but also the context information of the whole image.

However, conventional human activity estimation models are limited to outdoor
applications, such as pedestrian detection [9,10,12] and sports activities such as Leeds
Sports Pose (LSP) [13] and the Parse dataset [14–16]. These datasets mainly focus on
upright postures such as walking, running, and standing, and do not include other postures
more typical of indoor activity, such as sleeping, reclining, and sitting. However, because
modern people spend on average more than 80% of their time indoors, more accurate
indoor activity estimation methods are essential when seeking to provide a comfortable
and customized indoor environment that considers the occupants’ lifestyle and activity. In
addition, based on human–computer interaction (HCI), smart services and technologies by
considering indoor activity of an occupant can be provided in real-time. In order to identify
indoor postures, it is necessary to develop a dataset and estimation model of indoor activity
trained using this data.

In this study, a DNN-based model that estimates the joints location of the occupant
for various indoor activities was developed. In the model development process, images of
various indoor activities were collected from the laboratory and the internet. The DNN
model was developed to estimate the joint coordinates of the person in the image, and the
accuracy of the proposed model was assessed. The developed model is a vital technology
for being applied to estimate the actual activity [17,18], and it is believed that the metabolic
rate and the PMV of occupants can be calculated based on the estimated indoor activity.
In addition, this possibility is expected to enable PMV-based environmental control and
enhance indoor thermal comfort.

The remainder of this paper is organized as follows. In Section 2, related research on
human activity estimation is summarized. Section 3 presents the 10 selected indoor activi-
ties and the method for collecting image data. In addition, the structure and parameters of
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the DNN model are presented. Section 4 presents the results of an analysis of the accuracy
of the proposed model. Finally, Section 5 discusses the implications of the study results
and future research directions.

2. Related Research

Extensive research has been conducted on how to recognize and analyze human be-
haviors from images, beginning with studies on how to detect a person present in an image.
The most widely known and used technique for this is based on HOG. This technique was
first proposed by Dalal and Triggs [9], who presented a method for calculating features
based on the distribution of a gradient by region and detecting a human body by combin-
ing the HOG features of adjacent regions. This gradient-based feature has the advantage
of being robust to external influences, such as illumination, and it was designed to first
calculate the distributions by region and then combine them to recognize complex human
behavior. Various algorithms have since been proposed to improve the accuracy and speed
of the HOG method [10,19]. As such, there have been ongoing studies into approaches for
designing features for partial regions and recognizing an object by combining the features
of surrounding regions. For example, approaches such as the “bag-of-features” approach
to object recognition have been tried [20]. Felzenszwalb [21] proposed a part-based model
for object detection that is a multi-scale approach that detects a whole object by considering
the relationships between parts and filtering certain parts of a target object. In this way, the
possibility of detecting the entire object and the part constituting the object was confirmed.

Improving such image recognition techniques, extensive studies have been performed
to address the human activity estimation problem. Yang and Ramanan [15] proposed a
part-based model that simultaneously detects parts of the human body and identifies the
relations between adjacent structures. This part-based model has a flexible structure that
facilitates the capture of complex human activity information. Compared to conventional
human activity models, this model is faster and more accurate. Chen and Alan [16] devel-
oped a model that utilizes pairwise spatial relationships between joints and local image
patches. Their model is a form of a graphical model combined with a deep convolutional
neural network (DCNN) that learns conditional probabilities regarding whether body parts
exist in an image patch and detects body parts in a local image patch using the spatial
linking of the joint relationships. However, in these studies, most features are based on the
characteristics of specific regions of an image; the overall characteristics of an image are
not considered. In particular, feature-based methods perform poorly for foreshortening
and occluded joints in an image.

To overcome these limitations, several attempts have been made recently to use DNNs.
DNNs with a large number of layers can learn progressively complex features effectively
from input images. Furthermore, a DNN learns to detect complex patterns for a whole
image, not just local patches. The DeepPose model proposed by Toshev and Szegedy [11]
was the first model that used these advantages in human activity estimation. In their study,
the last layer of a neural network called AlexNet [22] was modified, resulting in signifi-
cantly higher accuracy than is achievable by conventional image recognition methods, to
output the coordinates of joints from an input image. However, the dataset used in this
model had a high proportion of poses related to sports, and it was difficult to predict joints
that were not visible in the image. State-of-the-art research has also been conducted on
the estimation of hands and poses using the learning of three-dimensional (3D) coordi-
nates [23,24]. This approach has the advantage of being able to estimate three-dimensional
coordinates; however, estimating the coordinates from a single two-dimensional (2D) image
can cause perspective distortion. This limitation needs to be resolved because it increases
the possibility of error when predicting 3D values from 2D sources.

3. Methods

In this study, a DNN-based human activity estimation model that estimates human
joint coordinates from various types of indoor activity images was developed. The 14 major
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joints of the human body are as follows: (1) Right ankle, (2) right knee, (3) right hip, (4) left
hip, (5) left knee, (6) left ankle, (7) right wrist, (8) right elbow, (9) right shoulder, (10) left
shoulder, (11) left elbow, (12) left wrist, (13) neck, and (14) head. The DNN-based model
was constructed to output the coordinates of human joints from an input image. Complex
behaviors were recognized by increasing the number of layers. The residual deep learning
method [25] was used to train the DNN effectively with a large number of layers.

The development process for the model is presented in Figure 1. First, a dataset con-
sisting of images of people in various indoor activities was constructed, and the coordinates
of 14 major joints were marked manually for each image. Second, the DNN was trained
and optimized with 80% of the dataset. The DNN model took the images as input and
produced the location of the 14 joints as output. Third, the estimation accuracy was tested
with the remaining 20% of the dataset.
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Figure 1. The activity estimation process for indoor activity images.

3.1. Datasets

First, representative indoor activities were selected from Table 1, “Metabolic Rates for
Typical Tasks,” of ASHRAE standard 55, produced by the American Society of Heating,
Refrigerating, and Air-Conditioning Engineers (ASHRAE) [26]. ASHRAE standard 55 pro-
vides a list of various indoor activities. From this list, 10 representative indoor activities
within the home and at the office were selected (Table 1): Sleeping, reclining, sitting quietly,
standing in a relaxed manner, reading while seated, writing, typing, filing while seated,
filing while standing, and walking about. Of the 10 selected activities, five were sitting,
three were standing, one was lying, and one was reclining.

Table 1. 10 representative indoor activities.

Type Resting Office Activities

Activities

Reading, seated
Sleeping Writing
Reclining Typing

Seated, quiet Filing, seated
Standing, relaxed Filing, stand

Walking about

In total, 870 images for the 10 indoor activities were collected from the internet and by
photographing participants directly in the laboratory. Images showing as many human
joints as possible were used because, if some of the joints are not visible in the images,
suboptimal training will occur. The collected images were resized to 128 × 128 for the
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training and testing of the proposed model. Figure 2 shows examples of resized laboratory
images for the 10 indoor activities.
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Figure 2. Examples of the images taken in the laboratory.

A human activity was defined by the coordinates of the 14 joints as shown on the left
side of Figure 3: (1) Right ankle, (2) right knee, (3) right hip, (4) left hip, (5) left knee, (6) left
ankle, (7) right wrist, (8) right elbow, (9) right shoulder, (10) left shoulder, (11) left elbow,
(12) left wrist, (13) neck, and (14) head. These are identical to the joints defined in the Leeds
Sports Pose (LSP) dataset [13]. For different joint models, the proposed DNN model can be
applied by modifying the final output layer only.
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Figure 3. Major joints and body parts of human.

Using the 14 joints, 10 body parts were defined, as shown on the right side of Figure 3.
Considering body symmetry, these 10 body parts could be further reduced to six: The head,
torso, upper arms, lower arms, upper legs, and lower legs. Each body part, except the
torso, was defined by connecting two adjacent joints. The torso (the solid green line) was
defined as the centerline connecting the center points of the shoulders (joints 9 and 10) and
hips (joints 3 and 4).

In the dataset, the coordinates of some joints that were not visible (because they were
occluded or out of the image) were treated separately with a special annotation (−1), and
these joints were excluded from the accuracy analysis.

3.2. Residual Deep Learning for Human Activity Estimation

The proposed model consisted of 138 convolutional layers to learn the features of the
images and 14 fully connected layers for the output of the joint coordinates. To overcome
the problem of vanishing or exploding gradients as the number of layers increases and to
improve the overall accuracy, the residual deep learning method proposed by He et al. [25]
was used in this study.
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A residual block is a unit that has three convolution layers with a shortcut, followed
by batch normalization (BN) and a rectified linear unit (ReLU) (see Figure 4). A shortcut
connection was added to directly connect the input and output of every three convolution
layers. It prevents the gradient vanishing problem in training a very deep neural network.
The values of the kernel size (k × k) of each convolution layer and the stride were set to
one. Introducing numerous shortcuts prevented the vanishing gradient problem in training
the proposed DNN with a very larger number of layers.
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Figure 4. The structure of the residual block unit.

The deep residual network obtained using a combination of residual blocks in two
stages is shown in Figure 5. The sequential stage learns the whole image features sequen-
tially, and the parallel stage independently estimates the coordinates of each of the 14 joints
with 14 residual blocks. The sequential stage consists of four convolutional down-sampling
(conv-down) layers and 16 residual blocks, and the sequence includes a conv-down layer
and repeated multiple residual blocks. Parameters of the individual residual blocks and
convolutional layers are denoted on the right side of Figure 5. An input image passes
through three residual blocks (1–3) after its spatial resolution is lowered by passing through
the conv-down 1, BN, and ReLU stages. After passing through conv-down2, it goes through
four residual blocks (4–7). Then, after passing through conv-down3, it goes through six
residual blocks (8–13). Finally, after passing through conv-down 4, it goes through three
residual blocks (14–16). The coordinates are then refined by going through residual blocks
in parallel for each joint. As a result, the total parameter size is 1,734,490,260.

For the purpose of training, the proposed model was initialized with the Xavier ini-
tializer, and the Adadelta optimizer [27] was used to minimize the Euclidean distances
between the estimated joint coordinates and the true coordinates. The training was per-
formed for 100 epochs, using a batch size of 45 and a learning rate of 0.01.
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Figure 5. The structure of proposed deep neural network (DNN) model for activity estimation.

In the training of the model, the training data were augmented using various geometric
transforms. Of the total 870 images, 696 images (80%) and joint coordinates were used for
training, using stratified sampling that maintained the same proportion of each activity.
After shuffling and pixel normalization, augmentation was performed with (1) rotation, (2)
vertical flipping, and (3) random cropping. The rotation process increased the amount of
training data by a factor of 11 by rotating an image by 5◦ at a time within the range of −30◦

to 30◦, increasing twice using a vertical flip (flipping the left-hand and right-hand sides of
an image around the center line of the image), and performing random cropping, by which
an image with a person was scaled to various sizes and translations. To apply random
cropping, a bounding box was set-up in an image including all human joint coordinates
tightly. The four-sided gaps around the tight bounding box from the original image frame
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were divided into 50 equal intervals and defined as padding. A padded bounding box
was generated by selecting a padding size between 1 and 25 intervals. Finally, a bounding
box (Bbox) was applied to the augmented data by positioning the padded bounding box
randomly between the space of the tight bounding box and the padded bounding box.
Random cropping was performed before the training started, and the number of images
was increased by a factor of 16. By using data augmentation, the number of training
images was increased 352 times. Therefore, the augmented dataset included 696 × 352 =
244,992 images.

3.3. Analysis Metrics

To quantify the accuracy of the joint estimations, the mean squared error (MSE)
and percentage of correct parts (PCP) were used to evaluate the joint coordinates and
body part estimation, respectively. The MSE is defined as the mean of the squares of the
distances between the estimated joint coordinates and the true joint coordinates, as shown
in Equation (1):

1
n ∑n

i=1(x̂i − xi)
2 + (ŷi − yi)

2, (1)

where (x̂i, ŷi) and (xi, yi) are the estimated and true coordinates of the ith joint, respectively,
and n is the number of joints which is 14 in this model.

PCP is a method proposed by Eichner et al. [28] that is used as a metric to evaluate
the estimation accuracy of body parts such as the torso and limbs. The estimated position
of a body part is considered correct when the errors for the joint coordinates at both ends
of the body part are smaller than a predetermined threshold. The blue dots and lines
in Figure 6 represent the true joints and body parts, respectively. Orange dots and lines
represent estimated joints and body parts, respectively. Typically, the threshold is set to
half of the length of the body part of interest. For example, in Figure 6, the upper arm is
correctly estimated, because the estimated right shoulder and elbow positions are within
the threshold ranges (shown by circles). Thus, in this study, the PCP was assumed to
indicate that an estimated coordinate was correct if |Estimated joint coordinates—ground-
truth joint coordinates| < (length of limb) / 2.
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Figure 6. The concept of the percentage of correct parts (PCP).

The MSE and PCP were measured using 10 cross-validations. For each cross-validation,
the indoor dataset was randomly partitioned into training (80%) and test sets (20%) for the
fixed activity ratios.

4. Results and Discussion
4.1. Training the Deep Residual Network for Activity Estimation

Despite having many layers and a large number of parameters, the model developed
in this study converged within only 100 epochs when trained with the augmented dataset.
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This was a quite promising result, considering the larger number of layers and the size
of the training dataset. The PCPs present the accuracy of the model by performing 10
cross-validations with different partitions of the dataset. Cross-validation was performed
prior to testing to verify that the model was trained regardless of the data sampling impact.
After 100 epochs, the training PCP converged close to 1.0 (Figure 7a) and the test PCP
converged to 0.86 (Figure 7b). The model did not exhibit overfitting to the test dataset, and
the mean PCP value converged to values greater than 0.80 in all 10 cross-validations.
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Figure 7. Training results of the proposed DNN model.

The MSE of joint coordinate estimation was confirmed using the converged learning
model. In addition, the accuracy of the PCP for each body part and for each indoor activity
was analyzed using the joints estimated in the output of the model.

4.2. Accuracy Analysis of the Estimated Joints

To evaluate the accuracy of the model, the MSE was measured for each of the estimated
joints. As shown in Figure 8, the MSE value of each joint shows the error of the estimated
coordinates in the images with 128 × 128 pixels, according to the numbering of the 14 joints
shown in Figure 3.
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The further a joint is from the torso, the higher the MSE tends to be. The head (Hd)
and neck (Ne) had the lowest MSEs, and the wrists (RW and LW) had the highest MSEs.
Four coordinates (RH, LH, RS, and LS) connected to the torso had lower MSEs than the
other remaining joints. The MSEs of the knees (RK and LK) were higher than those of the
ankles (RA and LA), and the MSEs of the elbows (RE and LE) were higher than those of the
wrists (RW and LW). This is because the wrists and ankles had a larger and more varied
range of movement than did the torso. Therefore, for joints connected to the torso, because
the motion radius is relatively small, the estimation error of the model was low.

The estimated joints are visualized around a set of fixed joints on the left side of
Figure 8. Each dot represents the estimated joint location of individual joints. First, esti-
mation errors for individual joints were measured for the test dataset as two-dimensional
vectors. Then, these error vectors were plotted relative to the set of fixed joints, as shown
on the left side of Figure 8. The colors of the estimated dots were identical to the respective
colors of the joints shown in the graph. Estimation errors for the torso were smallest, and
the errors increased with the joint distance from the torso. As with the MSE results, there
was a greater variance in the coordinates of the right and left wrists.

4.3. Accuracy Analysis of the Estimated Body Parts

The accuracy of each body part was analyzed using the estimated joint coordinates.
The estimation accuracies for body parts measured by PCP exhibited similar patterns as
Figure 9. Each color in the graph matches the body part’s color in Figure 3. A higher PCP
represents more accurate estimates of the shape and location of the body parts. The mean
PCP for each body part, including all activities, is shown in Figure 9. The PCP of the torso
was highest (0.93). The body parts directly connected to the torso (the upper arms and legs)
had relatively high PCPs (0.84 and 0.87, respectively). This is because the joints close to the
trunk were more accurately estimated, as shown in Figure 8.

The lower arms, which are further from the torso, had the lowest PCP (0.77). This is
because the estimated joint accuracy of both wrists in the lower arms in Figure 8 was low.
However, the lower legs had a PCP value of 0.89, which was 0.02 higher than that of the
upper legs. The distance from the knee to the ankle may appear longer than that from the
hip to the knee in a sitting position depending on the image angle, as the depth information
in the two-dimensional image is difficult to train. As a result, the PCP area was larger for
the lower legs (i.e., from the knee to the ankle) due to this dimensional error. In addition,
the PCPs of the upper and lower arms were lower than those of the legs, indicating that
legs are easier to localize than arms.
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To comprehend the PCP result of body parts more precisely, the estimation accuracies
were further analyzed based on indoor activities. Table 2 shows PCPs calculated for the
individual activities. The estimation accuracy of each activity can be expressed in terms of
its mean PCP. The activities that involve relatively consistent poses exhibit high estimation
accuracies. For example, the standing relaxed, typing, and walking activities had notably
high PCP values of 0.92, 0.92, and 0.91, respectively, because these activities involve
postures with less movement. A common characteristic of these activities is that the torso,
as seen in the collected image dataset, is in an almost vertical orientation. Furthermore, in
general, the movements of other body parts, such as lower arms and lower legs, do not
change significantly.

Table 2. PCPs of body parts by indoor activities.

Activities
Body Parts

Head Torso Upper
Arms

Lower
Arms

Upper
Legs

Lower
Legs Mean

Sleeping 0.76 0.90 0.81 0.62 0.86 0.83 0.80
Reclining 0.88 0.94 0.82 0.71 0.88 0.94 0.86

Seated.quiet 0.88 0.88 0.82 0.79 0.88 0.94 0.87
Standing.relaxed 0.82 1.00 0.91 0.85 0.97 0.97 0.92
Reading.seated 0.94 0.94 0.82 0.82 0.88 0.91 0.89

Writing 0.82 0.94 0.70 0.68 0.74 0.85 0.80
Typing 0.94 0.94 0.94 0.82 0.94 0.94 0.92

Filing.seated 0.88 0.88 0.88 0.88 0.88 0.88 0.88
Filing.stand 0.71 0.88 0.65 0.68 0.71 0.65 0.71

Walking about 0.82 0.94 0.91 0.88 0.97 0.94 0.91
Mean 0.84 0.93 0.84 0.77 0.87 0.89 0.86

However, the mean PCPs of sleeping (0.80), writing (0.80), and filing standing (0.71)
were lower than those of the above three activities by more than 0.1. The reason for this is
that these activities involve more diverse human poses and larger movements of body parts
than the above three activities with high PCPs. In this study, activities that mostly involve
standing or sitting motionlessly have high accuracy in estimating body parts. On the other
hand, accuracy estimates for body parts were relatively low for activities involving large
ranges of arm or leg motions.

Figure 10 shows examples of activities estimated using the proposed model. Estimated
body parts are shown for some images in the test dataset. The torso, which had the highest
PCP of the body parts listed in Table 2, was accurately estimated for all activities. By
contrast, the positions of the lower arms, which had low PCPs, as shown in Table 2, were
more difficult to estimate. For example, the bottom row, of “Filling stand” in Figure 10,
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shows a larger error for estimating the right arm, which is extended further to pick up an
object. Interestingly, in case of the legs, the position of the joints is not constant, due to
various sitting positions, but they are estimated with high accuracy.
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Accurate estimation of the body parts position allows you to estimate a person’s
indoor activity [29]. Estimates of indoor activities can be used as information for an
indoor environment and system control in various building types such as offices, houses,
and hospitals. In particular, it is possible to provide information on the occupant indoor
activities, which is essential for the environment control of systems, energy, health, and
safety in spaces involving long periods of time spent indoors. As a result, classifying indoor
activities makes it possible to create personalized environments for individuals.

5. Conclusions

In this study, a DNN model for estimating joints location in various indoor activities
was developed and analyzed. The model was trained with images of indoor activities and
estimated human joint coordinates. The accuracy of the proposed model was then assessed,
and the following conclusions could be drawn.

1. The proposed DNN uses a large number of layers to learn complex human poses
images effectively. Shortcut connections in the residual block make it possible to effi-
ciently train the model within only 100 epochs. In the first stage of the model, residual
blocks are connected sequentially to learn progressively more complex features of
indoor activities. In the second stage, 14 branches of residual blocks independently
estimate 14 individual joints, encouraging fine-tuning of joint estimation.

2. The accuracy of joint estimation indicated that the MSEs tended to increase as the
joint’s distance from the torso increased. The MSE of the neck was lowest, while that
of the left wrist was highest. The MSEs of the arms were higher than those of the
legs. Because the arms exhibit more diverse poses, the range of movement is large; by
contrast, legs exhibit smaller variations in poses, which results in a lower estimation
error.

3. PCPs were calculated for body parts. The PCP of the torso was highest (0.93). The
PCPs of the arms were low because the range of movement was larger than that of the
legs. The lower legs had larger PCP values than the upper legs for sitting activities.
Activity estimation accuracy varied for different activities. While the overall average
PCP for the 10 activities was 0.86, the PCPs of individual activities ranged from 0.77
to 0.93. Accuracies were higher for relatively still activities but lower for activities
involving wide ranges of arm or leg motions.

In this study, it was confirmed that joint coordinates can be estimated from indoor
activity images by the developed DNN model, which could be applied for indoor activity
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prediction. The identification of indoor activity is applied to the metabolic rate estimation,
which enables PMV-based thermal environment control. As a result, it not only provides a
comfortable thermal environment, but also improves the health and quality of life of the
occupants.

The developed model is currently trained with only 10 types of indoor activities;
follow-up studies, however, will be conducted to expand the range of indoor activities and
increase the size of the dataset in order to estimate various activities that might occur in the
real environment. In addition, the DNN model can be re-trained with activity image data
of occupants in the actual building, so that a personalized environment can be provided by
adapting to the new environment.

In order to improve the estimation performance of the current model, which instantly
outputs joint information from the image, an activity determination algorithm [18] will be
combined with the current model. The algorithm determines the representative activity
and the activity intensity by computing the frequency of the estimation outputs from the
model over a certain period of time. From this, the performance of estimating the metabolic
rate in the actual building can be improved by compensating errors from the model and
recognizing the intensity of activity. Another interesting direction for the future work
would be to integrate an object detection model with the DNN model to improve the
estimation accuracy by recognizing objects and inferring the human pose obscured by
objects. Moreover, continuous efforts for model improvement should be carried out such as
using information on three-dimensional images or estimating activities of multiple people.
By supplementing these techniques for the performance enhancement of the model, it will
be improved into an advanced model with high applicability to actual buildings.
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