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A B S T R A C T   

The aim of this study is to estimate real-time clothing insulation (R-CLO) and to evaluate the effectiveness of 
predicted mean vote (PMV)-based control on thermal comfort and electrical energy. For this purpose, an image- 
processing R-CLO model was developed to estimate the clothing insulation for various ensembles of garments 
worn by the occupants. The R-CLO model classified 16 individual garments and estimated the total clothing 
insulation for various ensembles based on these garments. Performance testing using the PMV output from the R- 
CLO model was conducted. The resulting PMV-based control changed the indoor set temperature according to 
changes in the clothing insulation, which improved the thermal comfort of the occupants when compared with 
existing control methods. Even though the proposed control method established a comfortable indoor envi-
ronment for all clothing conditions, but also affected the electrical energy. The electrical energy is increased as 
the clothing insulation increased. This study confirmed the potential of comfort-driven control using a vision- 
based R-CLO model and verified that actual clothing information is required to achieve thermal comfort in 
the real building as well as to operate the system considering energy.   

1. Introduction 

1.1. Background 

A number of factors determine the quality of an indoor environment, 
with thermal quality in particular determining the thermal comfort of 
the occupants, which has an important influence on their health, work 
productivity [1,2], and quality of life [3–5]. Because thermal comfort is 
considered important in terms of architecture, including the optimal 
control of building surfaces and facility systems, a number of previous 
studies have sought to improve thermal comfort using experiments and 
simulations [6–8]. To evaluate the thermal comfort of occupants, per-
sonal factors such as their metabolic rate and clothing insulation and 
environmental factors such as air temperature, relative humidity, mean 
radiant temperature, and air velocity have been considered. Based on 
these factors, various models have been developed to evaluate thermal 
comfort [9,10], including the predicted mean vote (PMV) [10], which is 
a thermal comfort index used in international standards such as ISO 
7730 [11], ASHRAE Standard 55 [12], and CEN 15251 [13] that 
quantifies thermal comfort based on both environmental and personal 
factors. 

Despite the previous research on thermal comfort, if occupants in-
formation such as their activity patterns and preferences are not 
considered when operating a building, an uncomfortable environment 
can be created and inefficient operating decisions can be made that lead 
to unnecessary energy consumption [14,15]. As such, for the optimal 
operation of a building, the two-way interaction between the occupants 
and the building must be considered. Recently, occupant-centric control, 
which aims to improve thermal comfort and reduce energy consumption 
by considering occupant information, has emerged as a new research 
field [14,16,17]. In particular, the introduction of deep learning tech-
nologies capable of pattern recognition, data mining, and image pro-
cessing for complex data and of hardware technologies such as the 
Internet of Things [16,18] and advanced sensing devices [19–21] has led 
to the development of data-based models and new approaches to 
occupant-centric building control [7,14,22–24]. 

Clothing insulation and the metabolic rate are occupant character-
istics that are particularly important in determining thermal comfort, 
and a building should be operated considering the actual thermal 
comfort of the occupants. Therefore, comfort-driven building control 
using PMV indicators has been employed to create a comfortable envi-
ronment customized to the occupants. In this approach, unlike with 
general dry-bulb temperature (DBT)-based control, complex thermal 
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environment factors are considered. However, the personal factors that 
determine the PMV are dynamic in a real environment, which is difficult 
to measure or predict using sensors. Therefore, personal factors are 
usually assumed to be fixed values for calculating PMV [25,26]. For this 
reason, even if the PMV is used as a control variable in conventional 
building control, the actual thermal comfort of the occupants is not 
taken into account. 

On/off control based on a simple indoor set temperature or PMV- 
based control using fixed personal factors have been widely employed 
in existing building control systems. To use PMV as an accurate control 
variable, a method for obtaining comfort information based on occupant 
characteristics such as their metabolic rate and clothing insulation is 
required [27,28]. Clothing insulation is a dynamic variable that is 
determined by social and psychological factors, meaning that 
field-based measurements must be taken to effectively employ it in a 
control system. However, due to the absence of sensors and methods that 
can be used to effectively measure clothing insulation, various models 
are being developed, including traditional data-driven methods, ma-
chine learning including artificial intelligence-based methods such as 
deep learning using thermal imaging and RGB cameras. 

1.2. Clothing insulation measurement methods 

Clothing insulation (Icl) is defined as the insulation provided by all of 
the clothing worn by a person, representing the thermal resistance be-
tween the skin and the surface of the clothing (1.0 clo = 0.155 m2K/W) 
[12]. The type, material, and thickness of individual garments deter-
mine the clothing insulation of the overall ensemble, thus it is a dynamic 
variable that varies depending on the garment. ISO 9920 [29] and 
ASHRAE Standard 55 [12] provide standards for general garments and 
ensembles, specifying types, materials, and clothing insulation values. 
Accurate measurements of clothing insulation require expensive 
equipment, such as thermal mannequins and climate chambers capable 
of precise thermal environmental control [30,31]. However, it is 
impossible to measure the real-time insulation for the numerous en-
sembles that may occur within a building environment in this manner. 
For this reason, when calculating thermal comfort, fixed values of 0.5 clo 
in summer and 1.0 clo in winter [12,32] or direct survey approaches [5, 
33,34] have generally been employed. 

However, in the field, control systems based on thermal comfort 
must be operated by measuring the dynamic clothing insulation of the 
occupants without their direct participation. To solve this problem, 
various studies have sought to develop data-driven and/or sensor-based 
models that can indirectly determine the clothing insulation of the oc-
cupants. Data-driven models employ field survey data and environ-
mental variables that can be measured by sensors, with regression or 
logistic models employed to predict the average daily clothing 

insulation based on its correlation with key environmental variables, 
including the highest and average outdoor temperature [33,35] and the 
outdoor temperature at 6 a.m. [36,37]. However, when using only 
environmental variables to predict clothing insulation, there are limi-
tations associated with the diversity of regional and climatic data and 
differences in customary, psychological, and individual fashion prefer-
ences. In addition, because the daily average clothing insulation does 
not consider hourly clothing information, it is difficult to effectively 
ensure thermal comfort using a building control system. 

To overcome these limitations of data-driven models, measurement- 
based clothing insulation models using invasive or noninvasive sensors 
in wearable devices, thermal cameras, and RGB cameras, have been 
proposed. Thermal cameras have the ability to measure the skin and 
clothing surface temperature to predict real-time clothing insulation 
[38,39]. Miura et al. [38] used a thermal camera and thermal depth 
images to measure the clothing and skin surface temperature and 
calculate the clothing insulation. Lee et al. [39] also proposed a method 
for calculating clothing insulation for winter, spring/autumn, and 
summer by measuring the temperature of exposed skin on the forehead, 
chest, and legs using a thermal camera. These approaches can calculate 
clothing insulation without direct occupant participation using nonin-
vasive sensors, but infrared (IR) cameras can be inaccurate in practice 
depending on the distance to the measurement target, and only exposed 
body parts can be measured using the sensors [17]. 

Another approach for measuring real-time clothing insulation is the 
use of RGB images as input to image-processing models based on deep 
learning architecture that estimate clothing insulation by classifying the 
types of garment worn by the occupants [27,40,41]. Dziedzic et al. [42] 
developed a new measurement technique that quantifies the coefficients 
for clothing insulation using depth and RGB images taken from a Kinect 
device. They confirmed the potential of detecting the patterns of three 
types of ensembles and the detection accuracy was 74.29%, which re-
quires further improvement. Matsumoto et al. [41] developed a model 
that calculates clothing insulation using image-based machine learning 
that estimated the weight of individual clothes, from which the PMV can 
be calculated. The PMV estimation error was demonstrated to be lower 
than that calculated by the fixed clothing insulation value. Liu et al. [27] 
presented an approach to measuring clothing insulation and the meta-
bolic rate using a vision-based technique. They developed a model that 
provided an input source using a thermal camera and recognized 
clothing types using a convolutional neural network (CNN) structure. 
Basic clothing insulation was estimated by measuring the skin and 
clothing temperature, and classification was carried out for five types of 
tops only (long sleeves, long sleeves with unzipped sleeves, roll-up 
sleeves, roll-up sleeves with unzipped sleeves, and T-shirts). Choi et al. 
[40] developed a model framework that classified five clothing ensem-
bles in real-time using an image processing-based deep learning model, 
producing an accuracy of 86% in a real environment. In addition, they 
demonstrated that a PMV-based control system based on the model 
improved the thermal comfort of the occupants. 

1.3. Research purpose and process 

Previous studies have confirmed the potential utility of estimating 
clothing insulation based on images in order to create a more comfort-
able environment in consideration of actual clothing information. 
However, previous models have tended to classify only a few types of 
garments or a few fixed clothing ensembles, meaning that they cannot 
effectively represent the clothing insulation in an actual building envi-
ronment. Thus, because the clothing ensemble of occupants can vary 
dynamically, a practical approach to deciding the clothing insulation of 
various ensembles based on recognizing individual garments is neces-
sary. In addition, because managing a building environment based on 
the comfort of the occupants can also affect the building’s energy con-
sumption [17,43–45], it is necessary to analyze the effect of building 
control based on clothing insulation on occupant comfort and energy 

Nomenclature 

Ta air temperature [◦C] 
Va air velocity [m/s] 
Icl clothing insulation [clo or m2 ㆍK/W] 
Iclu garment insulation [clo or m2 ㆍK/W] 
Tr mean radiant temperature [◦C] 
M metabolic rate [met or W/m2] 
To operative temperature [◦C] 
PMV predicted mean vote 
RH relative humidity [%] 
TSV thermal sensation vote 
TSVr relative thermal sensation 
R-CLO real-time clothing insulation 
DBT dry-bulb temperature  
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consumption. 
The purpose of this study is to develop a vision-based real-time 

clothing insulation estimation model (hereafter referred to as the R-CLO 
model) for indoor environments and to evaluate the effect of PMV-based 
building control that considers actual clothing insulation on thermal 
comfort and energy consumption. The proposed R-CLO model can 
classify 16 individual garments and estimate the insulation of various 
clothing ensembles consisting of different combinations of tops and 
bottoms based on the classified garments. In addition, an algorithm for 
determining the clothing insulation representing the control cycle is 
developed for use in a PMV-based control system. The experiment re-
sults are analyzed in terms of thermal comfort and electrical energy 
consumption compared to conventional control methods. 

In this study, an experiment was conducted on a single occupant 
during the cooling season in four major stages (Fig. 1). In the first stage, 
an R-CLO model was developed to estimate the insulation of clothing 
ensembles based on input images, and a clothing insulation decision 
algorithm was created to determine the clothing insulation for a certain 
period that can be applied to building control. To develop the model, 
image datasets depicting various clothing ensembles were trained using 
a deep learning-based image processing network. In the second stage, 
the performance of the proposed model was assessed in both a test 
dataset and in a real environment. In the third stage, a PMV-based 
control system based on the proposed model was developed to reflect 
the clothing insulation of a subject, and comparative analysis was con-
ducted with two conventional control methods, DBT control and PMV- 
based control with fixed clothing insulation (0.5 clo). The experi-
mental results for the thermal environment, occupant thermal comfort 
(the PMV and thermal sensation vote (TSV)), and electrical energy in 
cooling mode were analyzed in terms of electricity consumption for the 
different control methods. 

2. Methods 

2.1. Real-time clothing insulation (Icl) estimation model (R-CLO model) 

In this study, the R-CLO model was proposed to improve an existing 
model developed by this research team [46]. The R-CLO model can es-
timate the clothing insulation (Icl) for an entire clothing ensemble by 
detecting and classifying individual garments from images. This 

represents an advance on previous models, which have typically clas-
sified only top garments [27,38] or handled only a few clothing en-
sembles with fixed top and bottom combinations [40]. Whit these 
approaches, it is difficult to recognize the variety of ensembles that can 
occur in a real environment. For example, a model that can only classify 
a "T-shirt and walking shorts" ensemble needs to be retrained for a 
"T-shirt and long pants" ensemble. Therefore, a genuinely practical 
model needs to be able to autonomously estimate the overall Icl by 
recognizing individual garments. The proposed model detects individual 
garments worn by a person in an image using the categories of top, 
bottom, outer, dress, and pajamas, and it calculates the total Icl based on 
the detected garments. In addition, this study aims to overcome the 
limitations of existing control systems for the thermal environment by 
proposing a Icl decision algorithm that determines the representative Icl 
for a specific control period. 

2.1.1. Dataset for training the R-CLO model 
Clothing images of both individual garments and ensembles were 

collected to train the R-CLO model. These images contained 16 repre-
sentative garments associated with the typical clothing ensembles pre-
sented in ISO 9920 [29] and ASHRAE Standard 55 [12]. The selected 
garments are universally worn in various types of building, including 
residential and office buildings. Table 1 summarizes the fiber and cor-
responding garment insulation (Iclu) for the 16 selected garments orga-
nized into five categories (top, bottom, outer, dress, and pajamas). 

Image data for model training were directly collected from online 
and offline sources and included images depicting clothes only and those 
of people wearing clothes. In addition, for full-body images, the com-
bination of garments differed so that various clothing ensembles could 
be trained. Images were collected for various angles (e.g., from the front, 
side, and rear) and poses (e.g., sitting and standing). A total of 6664 
collected images were randomly divided into training (70%), validation 
(10%), and test (20%) datasets. 

2.1.2. R-CLO model implementation 
The R-CLO model was trained using the YOLO (You Only Look Once) 

version 5 [47] structure, which can simultaneously perform object 
detection and classification based on a CNN. YOLOv5 is a deep learning 
network algorithm for real-time object detection that trains 
two-dimensional data such as images or videos. It can detect and classify 
objects in images and offers faster image processing than other models. 
The backbone of YOLOv5 extracts a feature map from an image and 

Fig. 1. Research process for the present study.  

Table 1 
Information for the 16 selected garments.  

Category Garment Iclu 

[clo] 
Fiber 

Top Short-sleeve shirt 0.24 Cotton 
Long-sleeve shirt 0.33 Cotton 
T-shirt 0.10 Cotton 
Long-sleeve sweater 0.36 85% wool, 15% nylon 
Long-sleeve 
sweatshirt 

0.16 Cotton, wool 

Bottom Trousers (straight, 
loose) 

0.22 Cotton 

Knee-length skirt 0.14 100% cotton 
Ankle-length skirt 0.23 100% cotton 
Walking shorts 0.08 100% cotton 
Sweatpants 0.28 50% polyester, 38% cotton, 12% 

viscose 
Outer Suit jacket 0.36 100% cotton 
Dress Short-sleeve 

shirtdress 
0.29 65% polyester, 35% cotton 

Long-sleeve shirtdress 0.35 65% polyester, 35% cotton 
Pajamas Long-sleeve pajama 

top 
0.31 65% polyester, 35% cotton 

Short-sleeve pajama 
top 

0.25 65% polyester, 35% cotton 

Pajama trousers 0.17 65% polyester, 35% cotton  
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divides it into S, M, L, and XL according to the structure. In this study, 
the L structure was used for training, which is capable of processing 
images every 15 s. Based on the trained backbone information, the head 
detects and classifies the target object. The garment detected by the 
model is displayed in the image with a bounding box containing only the 
clothes, and the garment classification results are labeled within the 
bounding box. 

The system platform used to implement the model was an NVIDIA 
Quadro RTX 8000, Ubuntu 20.04 LTS, Python 3.9.0, CUDA 11.4, and 
PyTorch 1.8.1. Model training was conducted using transfer learning for 
the pretrained model, and the model was trained with an image size of 
416, a batch size of 16, and 150 epochs using the training dataset. 
During training, the optimizer employed stochastic gradient descent, 
and the learning rate and momentum were 0.02 and 0.94, respectively. 

The performance of the trained model was first evaluated using the 
test dataset and then in a real environment. In this second assessment, an 
experiment was performed on subjects in a test bed, with the classifi-
cation performance for the garments using the optimal model analyzed 
and major sources of error identified. To evaluate model performance, 
precision and recall were calculated, and the classification performance 
of each garment was confirmed using a confusion matrix. The accuracy 
of clothing detection from the images was then evaluated using average 
precision (AP), which was determined by calculating the area of the 
precision− recall curve using the overlapping area between the ground- 
truth bounding box and the output bounding box for the model as a 
threshold. The closer AP is to 1, the better the performance. For the 
multi-class model, the mean average precision (mAP) for all classes was 
employed. 

2.1.3. Estimation process for clothing insulation (Icl) 
To employ the R-CLO model in actual building control, it was 

necessary to determine the Icl for the occupants for a particular control 
period. As outlined in Fig. 2, an Icl decision algorithm was developed for 
this purpose that implemented the results from R-CLO model. First, in-
door images were collected in 15-s cycles and employed as input data for 
the developed R-CLO model. The R-CLO model consequently detected 

and classified individual garments from the accumulated images in real- 
time. Based on this information, the combination of clothes classified 
with the highest frequency during a control cycle (10 min) was deter-
mined, and Icl was calculated accordingly using Eq. (1) from ISO 9920 
[29]. This method is widely used to calculate Icl when the actual mea-
surement of Icl is not possible [48,49]. 

Icl = 0.161 + 0.835
∑

Iclu (1) 

In this experiment, the Icl of an occupant representing the control 
period was determined using the Icl decision algorithm, and the indoor 
environment was controlled based on this real-time Icl. The performance 
of the Icl decision algorithm was evaluated for nine ensembles (see 
Section 2.3.3) using the mean square error between the actual and 
calculated Icl. The results for this are summarized in Section 3.2.2. 

2.2. Control methods 

In this experiment, three feedback control modes were tested, 
labeled Modes A, B, and C. As shown in the diagram of Fig. 3, an IR 
sensor was employed as an actuator to send a signal of air temperature, 
which was determined by the controller using the built-in algorithm, to 
create the environment for the test bed. At this time, the control variable 
was set according to the control mode, and the set point, feedback ele-
ments, and feedback signal were changed in accordance with the control 
variable. The information for each element of the three control modes 
tested in this experiment is presented in Fig. 3. The control cycle was set 
to 10 min during the experiment. 

Mode A was DBT-based control, for which the control variable was 
indoor air temperature. Because this experiment was conducted during 
the cooling period, the set point for Mode A was 25 ◦C. The feedback 
elements and feedback signal returned the measured indoor air tem-
perature. For Modes B and C, the control variable was the PMV and the 
set point was PMV = 0 (i.e., a neutral state). Modes B and C transmitted 
the difference between the set point and the feedback PMV as an error 
signal. The manipulated variable was the value of Ta that produced a 

Fig. 2. Icl decision algorithm employing the R-CLO model.  
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PMV closest to 0 to reduce the error for the next control cycle. 
In Mode B, the PMV was calculated based on four environmental 

variables (air temperature (Ta), relative humidity (RH), mean radiant 
temperature (Tr), and air velocity (Va)) measured using sensors and 
arbitrarily fixed personal factors. This method has been widely used in 
situations where it is difficult to measure personal factors for PMV-based 
control [26,50,51]. The personal factors were based on ASHRAE Stan-
dard 55 [12], with the metabolic rate based on sitting and reading (1.0 
met), which are common indoor activities and the clothing insulation set 
to 0.5 clo based on summer clothing standards. Using these sensor-based 
environmental variables and arbitrary personal factors as feedback el-
ements, Mode B transmitted the calculated PMV as a feedback signal. 

In Mode C, the proposed R-CLO model was employed, with the R- 
CLO results incorporated into the feedback elements, from which the 
PMV was calculated. Icl is calculated using the R-CLO model and the Icl 
decision algorithm described in Section 2.1. Thus, Mode C calculated the 
PMV based on the Icl estimated using images and the four environmental 
variables measured using a sensor and sent this as a feedback signal. 

2.3. Experimental information 

2.3.1. Test bed 
For the experiment, a test bed representing a real indoor environ-

ment was constructed and divided into two rooms of the same size (2.7 

Fig. 3. Summary of the feedback control system.  

Fig. 4. Diagram of the sensors and signals employed in the test bed.  
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m × 2.0 m × 2.2 m). Each room had one window and one door, and the 
interior lighting used LED lamps. In addition, as a unitary air condi-
tioning system, a packaged terminal heat pumps (PTHP) capable of 
heating and cooling was installed in each room to control the thermal 
environment. The coefficient of performance (COP) of the heat pump is 
3.64 when operating in cooling mode, the cooling capacity was 2.8 kW. 
The power consumption was 770 W when the Ta is 27 ◦C DB/19 ◦C WB, 
and the outdoor air temperature is 35 ◦C DB/24 ◦C WB [52]. More 
detailed information about the system and the test bed is provided in 
Appendix A. 

As shown in Fig. 4, the environment sensors were installed at a 
height of 1.2 m in the center of the wall to measure Ta, RH, Tr, and Va. 
Camera sensors were installed at a height of 1.8 m on both sides of the 
room for image collection. An IR sensor for transmitting the set point 
temperature and a current sensor to output real-time electric power by 
measuring the current intensity were installed in connection with the air 
conditioning system. The installed sensors collected environmental data, 
images, and current data in real-time, which were transmitted using 
serial and TCP/IP communication to the server located in the hall 
outside the rooms. In the server, the PMV was estimated and the control 
signal determined using the collected data, and the control signal was 
transmitted to the IR sensor. The setting of the next control signal was 
repeated every control cycle. Because the metabolic rate of the occu-
pants was fixed at 1.0 met, chairs and tables were provided to ensure the 
corresponding activity (e.g., sitting, writing, and/or reading) would 
occur. At this time, net chairs (0.00 clo) were used for this purpose to 
minimize their influence on the occupant’s thermal sensation. 

2.3.2. Data acquisition 
The test bed had an integrated sensor module containing the envi-

ronmental, camera, and current sensors for data collection and a server 
that processed data according to the control mode. The integrated sensor 
module was built based on Arduino and Raspberry Pi, which are single- 
board, open-source platforms. The platform is commonly used in home 
automation and security systems, is economical and highly scalable [53, 
54], and can effectively collect real-time data using TCP/IP and serial 
communication. In this experiment, the sensors measuring the envi-
ronmental variables and current were configured to be 
Arduino-compatible, and a Raspberry Pi sensor was used for the camera. 

The specifications of the integrated sensors installed in the test bed 
are presented in Table 2. The integrated sensor module collected in-
formation on four environmental variables (Ta, RH, Tr, and Va), indoor 
images, and the electric energy consumption of the system. The entire 
sensors in the integrated sensor module was calibrated prior to the 
experiment to minimize measurement errors. In this experiment, the 
data collected every 15 s using the built-in integrated sensor module 
were stored on the server by Python. The images were input into the R- 

CLO model to estimate the real-time Icl. The PMV was then calculated 
based on the Icl and environmental data, and the optimal temperature to 
produce a PMV as close to 0 as possible was determined. The set tem-
perature was transmitted to the air conditioning system via IR signal. 

2.3.3. Clothing ensemble schedule 
In the experiment, nine clothing ensembles (E1− E9) that can be 

distinguished by the R-CLO model were investigated. These ensembles 
are presented in Table 3; they represent ensembles regularly worn in 
residential and office environments based on ISO 9920 [5] and ASHRAE 
Standard 55 [11]. One limitation of the R-CLO model is that it is difficult 
to classify clothing layers using images. This is difficult even for human 
classifiers without the active participation of the occupants, such as 
through surveys or the use of accurate measurement devices. Currently, 
the clothing layers are set arbitrarily according to the type of the outer 
garment detected, and the subjects were asked to wear the ensemble 
components equally. 

Icl was calculated using Eq. (1), which considered the Iclu for all of the 
individual garments worn by the subject, leading to an Icl of between 
0.38 and 1.04 clo for the ensembles (Table 3). For the experiment, all 
test subjects wore underwear (Males: briefs, 0.04 clo; Females: bra and 
panties, 0.04 clo), ankle socks (0.02 clo), and sneakers (0.02 clo). For 
E7− 9, a sleeveless undershirt (0.06 clo) was added. The clothes were 
provided in men’s and women’s sizes using the same material wherever 
possible (see Table 1). 

2.3.4. Experiment process 
The experiment was conducted with one participant in each room, 

with each subject wearing an ensemble from Table 4 in random order. 
The experimental process presented in Fig. 5 was conducted for 40 min 
per ensemble. The system in the test bed controlled the indoor air 
temperature every 10 min via control signals received according to the 
control mode presented in Fig. 3. The first 10 min were set to allow the 
subjects to adapt to the room, and the experimental analysis was con-
ducted over the remaining 30 min. Once the 40-min session had ended, a 
15-min break was taken to allow the subjects to change their clothes. 
Consequently, the experiment was conducted for 210 min (40 min * 7 
ensembles) for men and 360 min (40 min * 9 ensembles) for women for 
each control mode. 

The subjects repeated the same experiment under Modes A, B, and C 
(see Fig. 3) and provided thermal sensation data for each environment. 
The experimental subjects participated over three days for Modes A, B, 
and C from September to early November, when the outside temperature 
was high. The subjective thermal sensation experienced by the subjects 
was measured using a seven-point TSV scale [12,31]. The survey was 

Table 2 
Sensor specifications.  

Parameter Sensor Specifications 

Air temperature (Ta) DHT 11 Range: 0–50 ◦C, Accuracy: ±
2 ◦C 

Mean radiant temperature 
(Tr) 

DHT 11 Range: 0–50 ◦C, Accuracy: ±
2 ◦C 

Relative humidity (RH) DHT 11 Range: 20–90%, Accuracy: ±
5% 

Air velocity (Va) Three-cup 
anemometer 

Range: 0–26.8 m/s 
Supply voltage: 4–10 V 
Measurement range: 0–30 m/ 
s 

Image RPI 8 MP camera 
board 

Resolution: 2592 × 1944 
pixels, 
Transfer rate: 1080p− 30 fps 

Current ACS712ELC-30A-T TA (◦C): − 40 to 85 
Optimized range, Ip (A): ±30 
Sensitivity (mV/A): 66  

Table 3 
Summary of the clothing ensembles.  

Ensemble Clothing 
insulation (Icl) 

Ensemble garments 

E1 0.38 clo Underwear, ankle socks, sneakers, T-shirt, walking 
shorts 

E2 0.45 clo Underwear, ankle socks, sneakers, short-sleeve 
shirtdress 

E3 0.50 clo Underwear, ankle socks, sneakers, short-sleeve 
shirt, walking shorts 

E4 0.53 clo Underwear, ankle socks, sneakers, short-sleeve 
shirt, knee-length skirt 

E5 0.56 clo Underwear, ankle socks, sneakers, short-sleeve 
pajama top, pajama trousers 

E6 0.60 clo Underwear, ankle socks, sneakers, long-sleeve 
sweatshirt, sweatpants 

E7 0.66 clo Underwear, ankle socks, sneakers, sleeveless 
undershirt, short-sleeve shirt, trousers 

E8 0.74 clo Underwear, ankle socks, sneakers, sleeveless 
undershirt, long-sleeve shirt, trousers 

E9 1.04 clo Underwear, ankle socks, sneakers, sleeveless 
undershirt, long-sleeve shirt, trousers, suit jacket  
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conducted using 2-min cycles with point-in-time (right-now) surveys, 
with the items based on ASHRAE standard 55 [12], and the survey re-
sults were averaged over the control period. The surveys were conducted 
with cloud-based Google Forms. There were some missing data due to 
network disconnection problems or omitted responses by the subjects. 
Therefore, the total number of completed surveys differed slightly be-
tween the subjects. This information is specified in Table 4 of Section 
2.3.5. 

2.3.5. Subjects 
The experimental subjects were 15 adults in their 20s and 30s. To 

minimize the effect of the body mass index (BMI) on the results, subjects 
with a normal BMI (18.5 kg/m2 ≤ BMI <25 kg/m2) were recruited. The 
summary statistics for the subjects are provided in Table 4. The mean 
BMI was 22.7 kg/m2 (SD = 1.7 kg/m2) for the men and 20.2 kg/m2 (SD 
= 1.4 kg/m2) for the women. The participation date in the experiment 
and the number of TSV survey data are also indicated. 

Because there could be differences in the subjective thermal sensa-
tion for each subject, a preliminary experiment was employed, and the 
relative thermal sensation (TSVr) results presented in Table 4. This 
preliminary experiment was conducted in the same manner for all of the 
subjects, who reported their thermal sensation at a temperature of 25 ◦C 
and clothing insulation of 0.5 clo [11]. The test subjects wore the same 
short-sleeve shirt and walking shorts, and the TSVr was recorded as the 
most frequent TSV measured every minute over a 5-min period. All male 
subjects were identified as thermally neutral (i.e., TSVr = 0) under these 
conditions, while the female Subjects 1, 2, 7, 11, 12, and 13 felt slightly 
cold (i.e., TSVr = − 1). 

3. Results and discussion 

3.1. Performance analysis for Icl estimation 

First, performance analysis for the R-CLO model was conducted for 
both the test dataset and in a real environment (Section 3.1.1), and then 
the performance of the Icl decision algorithm with the actual subjects 
was conducted (Section 3.1.2). By evaluating the performance of the 
model in a real environment, this study intended to prove its accuracy 
and confirm its applicability to real buildings. 

3.1.1. R-CLO model performance 
When training the R-CLO model, the loss converged after around 80 

epochs. The precision and recall for the training data were 0.94 and 
0.92, respectively. The mAP (threshold = 0.5) for all of the classes was 
calculated to be 0.96, and the validation results for the optimal model 
with the lowest learning loss produced an object loss of 0.005, a 
bounding box loss of 0.011, and a classification loss of 0.008. 

The performance results for the test dataset are presented in Figs. 6 
and 7. Fig. 6 displays a confusion matrix for the classification perfor-
mance of the model for the 16 garment classes. The X-axis represents the 
garments classified by the model, and the Y-axis represents the actual 
garments. The closer to 1.0 in the diagonal direction from the top left to 
the bottom right, the higher the accuracy. The average classification 
accuracy for all classes was 94.8%, and all garments except long-sleeve 
sweaters (88%) and long-sleeve shirtdresses (81%) had an accuracy of 
more than 90%. The main error for these two garments was that the 
long-sleeve sweater was misidentified as a long-sleeve sweatshirt, and 
the long-sleeve shirtdress was misidentified as a long-sleeve shirt or 
short-sleeve shirtdress. 

Table 4 
Summary statistics for the participants in the experiment.  

ID Sex Height (cm) Weight (kg) Age BMI (kg/m2) Relative thermal sensation Total number of surveys Participation dates 

1 Female 158 54 23 21.6 − 1 503 9/23, 9/26, 10/14 
2 Female 157 50 23 20.3 − 1 565 9/27, 9/28, 10/5 
3 Female 166 61 22 22.1 0 530 9/29, 10/2, 10/13 
4 Male 178 67 24 21.1 0 440 9/30, 10/2, 10/3 
5 Male 173 73 24 24.4 0 420 10/1, 10/8, 10/19 
6 Male 177 70 29 22.3 0 419 10/5, 10/6, 10/13 
7 Female 165 50 26 18.4 − 1 531 10/7, 10/10, 10/31 
8 Male 174 60 21 19.8 0 421 10/9, 10/17, 10/27 
9 Female 157 52 22 21.1 0 556 10/9, 10/30, 10/31 
10 Male 175 75 25 24.5 0 421 10/11, 10/23, 10/30 
11 Female 160 49 35 19.1 − 1 545 10/14, 10/20, 10/22 
12 Female 165 54.5 24 20.0 − 1 541 10/16, 10/17, 10/23 
13 Female 157 46 24 18.7 − 1 537 10/21, 10/25, 10/28 
14 Male 176 74 25 23.9 0 421 10/20, 10/24, 10/27 
15 Male 167 63 25 22.6 0 417 10/25, 10/29, 11/05  

Fig. 5. Detailed experimental process for each ensemble.  
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Fig. 7 presents examples from the R-CLO model for the detection and 
classification of clothes in the test dataset. The clothes in the image were 
able to be detected and classified from various angles. In addition, even 
if a body part, such as the upper body or face, was outside the image 
frame, it was possible to detect and classify the individual garments. In 
other words, the proposed model exhibited the potential to handle 
common situations that occur in a real environment, such as the 
collection of images from a variety of angles and certain areas not being 
captured by the images. 

Although the accuracy of the test dataset averaged 94.7%, because 
the data were randomly extracted, the variance in the amount of data for 
each class was high, making it difficult to generalize the results under 
the same conditions. Therefore, additional experiments were conducted 
in an actual indoor environment to verify the performance of the model, 
and preliminary experiments were conducted for new spaces and par-
ticipants that had not participated in the model training. 

The participants in the preliminary experiment consisted of five re-
searchers who each wore the nine different ensembles (E1− E9) and 
maintained a seated position in the test bed for 10 min each. Images 
were collected every 10 s from both angles in the laboratory, and a total 
of 5400 images (120 images per ensemble × 9 ensembles × 5 people) 
were used to evaluate the accuracy of the model and identify major 
errors. 

Fig. 8 presents the experimental results for the 12 individual gar-
ments included in the nine ensembles. In the garment classifications, the 
short-sleeve shirtdress had an accuracy of up to 98.4%, and the top seven 
garments had an average accuracy of 88.4%. Commonly, errors occurred 
when a large area of the garments was covered due to the subject’s 
posture or long hair or if the picture was out-of-focus due to movement 
by the subject. Because these errors can occur in real life when using 
images, this study attempted to resolve these issues by identifying the 
ensemble that occurred at the highest frequency for a specific period 
(see Section 2.1.3). For example, if there were two out-of-focus images 
due to the movement of the subject out of 80 images collected during a 
10-min control cycle, this did not affect the determination of the 
representative ensemble. In other words, of the images acquired during 
a 10-min control cycle, transient and infrequent errors were treated as 
outliers and ignored when determining the representative ensemble for 
that control cycle. 

The other five garments—long-sleeve sweatshirt, knee-length skirt, 
long-sleeve pajama trousers and top, and sweatpants—had a classifica-
tion accuracy ranging from 10.6 to 43.4%. The main sources of error for 
these garments are presented in Fig. 8. Notably, most of the errors were 
caused by misclassifying them as garments with similar insulating areas. 
For example, long-sleeve pajama trousers and sweatpants were often 
classified as regular trousers, while short-sleeve pajama tops were 

Fig. 6. Confusion matrix for the R-CLO model using the test dataset.  
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mainly classified as short-sleeve shirts. In addition, because knee-length 
skirts were often worn together with a short-sleeve shirt, 68.9% of these 
skirts were misidentified as short-sleeve shirtdresses because the top and 
bottom garments were mistaken as a pair. However, because the insu-
lating area of the garments was similar, the error in terms of Icl was likely 
to be low. 

3.1.2. Accuracy analysis for representative Icl estimation 
To control an indoor environment using the PMV, the Icl for the 

ensembles worn by occupants during the control period is required. 
Therefore, an experiment was conducted using an Icl decision algorithm 
(Section 2.1.3) that incorporated the proposed R-CLO model, and the 
accuracy of Icl for a control cycle of 10 min was analyzed. The experi-
ment was conducted with the subjects randomly wearing every 
ensemble, producing 405 Icl datapoints. The accuracy of the Icl for all of 

the subjects and the correct example from the Icl decision algorithm for 
each ensemble is presented in Fig. 9 (a)–(b). 

The dotted line in Fig. 9 (a) represents the actual Icl of the ensembles 
(Table 3), and the solid line refers to the average value of the repre-
sentative Icl output from the algorithm. The table in the graph shows the 
error between the actual and estimated values. The average error of the 
model for all of the ensembles was 0.03 clo, and the maximum error was 
0.06 clo. Except for E4 and E5, the ensembles had an error of less than 
0.03 clo. The pants in E5 and E6 (pajama trousers and sweatpants, 
respectively) were often classified as trousers, the same error as seen in 
Fig. 8. Therefore, errors also occurred in the representative Icl values. 
However, even if an error occurred, the average Icl error was not as large 
as ±0.03 clo. As an example, an Icl error of ±0.03 clo would lead to 
variation in the PMV of ±0.06 under the environmental conditions set 
for Mode A (Ta = 25.3 ◦C; RH = 62.7%; Tr = 24.7 ◦C; Va = 0.0 m/s) with 

Fig. 7. Examples of R-CLO model results (test dataset).  

E.J. Choi et al.                                                                                                                                                                                                                                   



Building and Environment 223 (2022) 109438

10

subject ID 8. Many of the misidentifications had a similar insulation area 
as the actual garment. The error for E4 (knee-length skirt and short- 
sleeve shirt) averaged 0.06 clo, which was mainly due to misidentifi-
cation as a short-sleeve shirtdress with a similar coverage area for the 
human body. 

Icl errors caused by poses or long hair obscuring parts of the body and 
out-of-focus images were mostly treated as outliers, thus the represen-
tative Icl was unaffected. In addition, even though some errors occurred 
in estimating Icl, it was necessary to analyze the effect of Mode C, which 
reflects real-time clothing insulation, on thermal comfort and electrical 
energy consumption compared with conventional control methods. 

To confirm the suitability of the proposed method for estimating 
real-time Icl, its results were compared with previous studies that 
developed image-based models to estimate clothing insulation. In pre-
vious research, models that classify only individual garments [27,38] 
and that classify ensembles [40,42] have been developed. In particular, 
Liu et al. [27] developed a model that classified five types of top garment 
according to the area of the upper body, and the classification accuracy 
was high at 95.17%. Miura et al. [38] estimated Iclu using three types of 
top garment, and the maximum error was reported to be − 0.95 clo. On 
the other hand, a model that classified the entire clothing ensemble 
rather than individual garments was developed to classify five ensem-
bles, producing an accuracy of 86% in a real environment [40]. 

The R-CLO model proposed in the present study estimates the Icl of 
ensembles based on the garment classification. It thus has the advantage 
of considering individual garments and clothing ensembles simulta-
neously. The garment classification performance of the developed model 
exhibited an average accuracy of 94.8% for the test dataset. This is 
notable because 16 types of garment were classified, more than twice as 
many as in previous models. In addition, the number of ensembles that 
could be identified based on this 16-garment classification system was at 
least 34. Thus, the R-CLO model can be considered to be more applicable 
to real environments. It was also shown that Icl can be estimated with an 
average error of 0.03 clo using nine representative ensembles. Thus, the 
proposed model offers improved performance and greater applicability 
compared to previously reported models. 

3.2. Analysis of the experimental results 

3.2.1. Environmental factors 
In this section, the thermal environment was evaluated based on data 

collected from the experiment testing the three control modes (see 
Fig. 3). Experimental data were collected at 15-s intervals and corrected 
with average data in 2-min units, generating 5370 experimental data-
points for analysis. Each datapoint included the four indoor environ-
mental variables (Ta, RH, Tr, and Va), clothing insulation information, 
the PMV, and the TSV for the test subject. Prior to analysis, outliers 
caused by system operation errors such as sensor errors and network 
disconnection during data collection were removed. The thermal envi-
ronment was analyzed in terms of the operative temperature (To). Across 
all subjects during the experiment, the indoor relative humidity had a 
range of around 30–70%, and Va averaged 0.08 m/s or lower. 

The change in To for each control mode depending on the clothing 
ensemble is presented in Fig. 10. Because the set point for the indoor air 
temperature differed between the three modes, the indoor To also 
differed. Mode A set the temperature at 25 ◦C, thus To was maintained at 
an average of 24.5 ◦C. Mode B employed PMV-based control with fixed 
values for personal factors, including Icl (0.50 clo), while the environ-
mental variables varied according to the sensor measurements. As a 
result, for all control points during the experiment, the indoor set tem-
perature was 26 ◦C, and the indoor average To was 25.1 ◦C, about 0.6 ◦C 
higher than for Mode A. 

In Mode C, Icl differed from E1 (0.38 clo) to E9 (1.04 clo), thus the set 
temperature for each control point was 23–27 ◦C. The average To was 
highest at 25.6 ◦C for E1 and the lowest at 23.3 ◦C for E9. In Modes A and 
B, the indoor To was constant irrespective of the clothing, whereas, in 
Mode C, the temperature varied dynamically according to the clothing. 

3.2.2. Thermal comfort 
The actual PMV distribution for the subjects in the created indoor 

environment is displayed in Fig. 11. Fig. 11 (a)–(c) shows the average 
and 99% confidence intervals (CIs) for the PMV derived from the syn-
thesis of the results calculated at 2-min intervals for Modes A, B, and C. 
The average PMV difference between E1 (0.38 clo) and E9 (1.04 clo), 
which had the largest difference in Icl, was highest for Mode A (1.3), 
followed by Mode B (1.2) and Mode C (0.5). The difference in the 
average PMV for Modes A and B was thus twice as high as that for Mode 

Fig. 8. Accuracy of garment classification using the R-CLO model in a real environment.  
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C, with the PMV increasing as Icl increased. On the other hand, the 
average PMV for Mode C ranged between − 0.51 and 0.08 depending on 
the clothing ensemble, confirming that the occupants had the highest 
thermal comfort when this mode was employed. 

In Mode A, the PMV was lower than the other modes for E1− E3 
because it generated the lowest temperature (Fig. 10). In particular, 
there was a large difference in the PMV for E1 and E9 according to the 
control mode. For E1, the average PMV for Modes A, B, and C were 
− 0.86, − 0.67, and − 0.51, respectively, with Mode C closest to the 
comfort range. In Mode C, 53.3% of the datapoints satisfied the comfort 
range, which was higher than that for Modes A and B (16.7% and 20.0%, 
respectively). 

The average PMV was 0.2 in E9 using Mode C, which was close to a 
neutral state. For E9, 60.0% and 53.3% of the datapoints were outside 

the comfort range for Modes A and B, respectively, while Mode C 
satisfied the comfort range for all datapoints. For E4 (0.55 clo) to E8 
(0.74 clo), the average PMV was between − 0.50 and 0.50 for all three 
control modes, with E2 (0.47 clo) and E3 (0.50 clo) fully falling within 
the comfort range, except with Mode A. 

In summary, the control method with the highest comfort satisfac-
tion was Mode C, while the lowest was Mode A. Additionally, all three 
control methods satisfied the comfort range for E4− E8, but Mode C had 
the highest satisfaction rate for ensembles with a large difference from 
0.5 clo. Therefore, PMV control that considers real-time Icl is more ad-
vantageous than other control methods under various clothing 
conditions. 

The TSV results for the thermal comfort of the actual subjects are 
displayed in Fig. 12. The TSV was investigated every 2 min. The vertical 

Fig. 9. Experimental results for the R-CLO model: a) estimation accuracy of the clothing insulation using the proposed model and b) output examples of the cor-
rect results. 
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endpoint of the diamond plots in the figure indicates that 50% of the 
data falls within 25–75%, and the asterisk denotes the average value. 
The area corresponding to the comfortable range is indicated in yellow. 

The average TSV results differed slightly from the PMV results. In 
Mode A, the average TSV for E1, E2, and E4, which had a low Icl, were 
− 0.61, − 0.92, and − 0.73, respectively. This means that the subjects felt 
slightly cool in Mode A. Except for these ensembles, the average TSV was 
between − 0.5 and 0.5, indicating a comfortable state. The average TSV 
for Modes B and C exhibited similar results, with a difference of up to 
0.28, and the comfort range was satisfied for all ensembles. Of the three 
modes, Mode A produced the highest percentage (38%) of datapoints 
outside the comfort range, while Modes B and C had similar percentages 
(20% and 24%, respectively). Most of the datapoints outside the comfort 
range were within the range of − 2.0 < TSV < − 0.5. 

The TSV measures subjective thermal sensation, and these results 
could be related to the TSVr summarized in Table 4. Six subjects had a 
TSVr of − 1 (Subjects 1, 2, 7, 11, 12, and 13), and the discomfort rate 
may have been higher for these subjects. The proportion of datapoints 
from subjects with TSVr = − 1 within the discomfort range (− 2.0 < TSV 
≤ − 0.5) was 60% and 40% for Modes A and B, respectively, compared to 
around 85% for Mode C. Thus, the indoor air temperature set using 
Mode C could cause discomfort by creating a rather cold environment 
for occupants with a low TSVr, especially for E7− 9. 

3.2.3. Analysis of electrical energy 
In the thermal comfort analysis, it was confirmed that Mode C was 

the most advantageous control method in terms of the PMV. Based on 
these results, the electrical energy of the air conditioning system was 
analyzed in terms of electric power consumption by control mode in 
cooling mode. Fig. 13 presents the average electrical energy for each 
ensemble used during the experiment accumulated for a total of 181.5 h 
(10.5 h each for seven men, 13.5 h each for eight women) for all 
subjects. 

There was no significant difference in electrical energy between the 
ensembles for either Mode A or B. The average electrical energy used for 
all ensembles was 140 Wh and 103 Wh for Modes A and Mode B, 
respectively, primarily due to a 1 ◦C set point temperature difference 
between the two modes. On the other hand, for Mode C, the indoor air 
temperature was set to be lower as Icl increased. Accordingly, the elec-
trical energy tended to increase as Icl increased, and the average elec-
trical energy for E9 was more than 2.2 times higher than for E1. 

The total consumption for Modes A, B, and C were 19.8 kWh, 14.9 
kWh, and 17.3 kWh, respectively. Mode C used 12.6% less energy 
compared with Mode A but used 16.1% more than Mode B. The total 
electrical energy in this experiment was the result of wearing each 

Fig. 10. Average indoor operative temperature (To) according to the control mode.  

Fig. 11. Distribution results for the calculated PMV: a) Mode A, b) Mode B and 
c) Mode C. 
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ensemble for the same 30 min, however, it can vary depending on the 
clothes that are worn in an actual building. For example, Mode C set the 
Ta to 26–28 ◦C for E1, which decreased the electric energy consumption 
by 34.8% and 8.8%, compared to Modes A and B, respectively. 

Conversely, for E9, Mode C required 33.7% and 85.7% more electric 
energy than Modes A and B, respectively, because the indoor air tem-
perature was set to 23–24 ◦C, which was lower than the other modes. 

Fig. 14 presents the electrical energy use of E1 and E9, which had the 

Fig. 12. Average TSV distribution according to the control mode.  

Fig. 13. Electrical energy according to ensemble and control mode.  
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largest difference in clothing insulation, for each mode over time. For 
E1, Mode C set a higher indoor air temperature, thus the cooling system 
was rarely employed and only standby power was used (Fig. 14a). On 
the other hand, for E9 in Fig. 14 (b), because Mode C set the lowest 
indoor air temperature, the system was operated in most time, and more 
electrical energy was used than with the other control modes. In other 
words, Modes A and B managed the system in a constant manner 
regardless of Icl, whereas, in Mode C, the operating time and electrical 
energy of the system varied depending on Icl. 

In summary, this section highlighted that the electrical energy can be 
differed depending on the type of clothing for proposed control Mode C. 
If the clothing occupants wear can be considered in real-time, the indoor 
environment can be controlled in a way that minimizes the energy at a 
suitable comfort level in an actual building. Therefore, real-time Icl must 
be accurately reflected in an optimal control system that considers both 
comfort and energy consumption in an actual building. 

4. Conclusions 

This study sought to control the indoor environment using the PMV 
as a control variable based on Icl information in real-time and to confirm 
its effect on thermal comfort and energy use. A CNN-based image pro-
cessing R-CLO model was developed to estimate real-time Icl, and a 
PMV-based control method reflecting the R-CLO model was designed. 
Using the developed model and control method, a thermal environment 
control experiment was conducted on subjects in a real environment. 
The performance of the proposed PMV-based control method with real- 
time Icl (Mode C) was compared with existing thermal environment 
control methods (DBT-based control and PMV-based control with fixed 
Icl; Modes A and B, respectively). The main results of this study are 
summarized below.  

1. The R-CLO model was able to classify 16 individual garments using 
RGB images and estimate the Icl for more than 34 clothing ensembles. 
The R-CLO model had an average accuracy of 94.7% for all garments 
based on the test dataset, while the Icl estimation error in a real 
environment was found to be as low as 0.03 clo on average. In 
addition, it was confirmed that the errors caused by clothing occlu-
sion and out-of-focus images can be treated as outliers by employing 
an Icl decision algorithm.  

2. In the thermal environment control experiment for the three control 
modes, Modes A and B employed a fixed set point temperature 
regardless of changes in clothing, while Mode C adjusted the indoor 
set point temperature according to changes in clothing. As a result of 
the PMV analysis, Mode C outperformed the other modes in terms of 

maintaining the PMV within the comfort range for all clothing con-
ditions. In addition, actual TSV surveys of the subjects confirmed 
that, unlike Mode A, the average TSV for Modes B and C was between 
− 0.5 and 0.5 for all ensembles, representing a comfortable state.  

3. In terms of electrical energy, there was no significant difference in 
the electrical energy consumption in cooling mode for Modes A and B 
with changes in Icl. On the other hand, because Mode C controls the 
indoor air temperature considering Icl, the electric energy increased 
in proportion to Icl. For example, E9 led to the use of 2.2 times more 
energy than did E1. This shows that the most advantageous control 
method in terms of electrical energy use in an actual building envi-
ronment can vary depending on the type of clothing that the occu-
pants wear. The need for real-time information on Icl was confirmed 
for optimal operation to reduce building energy use. 

The results of this study contribute to building management and 
control by suggesting a technology for estimating Icl in real-time so that 
it is possible to manage a building environment in a way that considers 
both thermal comfort and energy consumption. However, this study 
performed thermal comfort analysis for single occupants at a time; 
additional research should be conducted to detect individuals and their 
Icl for multiple occupants at the same time. In addition, since PMV is 
affected by altitude, further research should be conducted on occupants 
living in high-altitude areas such as La Paz in Bolivia, or even the pas-
sengers inside an airplane [55,56]. Moreover, because the proposed 
method may not satisfy the comfort range depending on the relative 
thermal sensation of the occupants, additional efforts are needed to in-
crease the satisfaction rate for thermal comfort by providing a custom-
ized environment for the occupants through model adaptive learning 
based on the TSV. 

As mentioned above, it was difficult to distinguish the clothing layers 
using the image processing model. Currently, all of the layers except for 
outerwear are set arbitrarily. Thus, additional research is needed to 
accurately estimate clothing insulation through layer classification. 
Additionally, the types of clothing that can be classified will be 
expanded so that the model can be applied to actual built environments. 

Additional experiment will be conducted on the heating period and 
perform a comparative analysis with the results of this study. It is also 
necessary to confirm the changes in thermal comfort and energy con-
sumption associated with the PMV in a way that also considers the 
metabolic rate. In addition, if an HVAC system with a finer temperature 
resolution is used, more accurate comfort control will be possible [31]. 
Additional energy consumption analysis is thus required for various 
HVAC system types and capacities. 

Fig. 14. Variation of the electrical energy use over time by control mode: a) E1 (Subject 10) and b) E9 (Subject 12).  
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Appendix A. Configuration of the test bed 

A1. Test bed configuration 

The test bed is inside the building, and every side of the test bed except the rear of the room are in contact with the indoor space as presented in 
Fig. A1. It consisted of two rooms with the same structure. Details of the envelope elements such as size and U-value, and installed systems are shown 
in Table A1. In the test bed, an inverter type of packaged terminal heat pumps (PTHP) is installed for indoor air conditioning. In addition, the room is 
naturally ventilated, and no additional ventilation system was installed.

Fig. A1. Test bed plan   

Table A1 
Structural properties of the test bed  

Test bed configuration Information 

Envelopment Floor area (m) 2.68 × 2.00 
Height (m) 2.2 
Door (W × H × D) mm 800 × 1800 × 30 
Window (W × H) mm 600 × 800 
U-value (W/m2k) wall & roof: 0.33 

floor: 1.35 
Air conditioning system Inverter type of packaged terminal heat pumps (PTHP) 
Ventilation system natural ventilation (window closed)  
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A2. Specification of the installed air conditioning system 

The air conditioning system installed for the experiment is an inverter-type PTHP unit commonly used at home that can use electricity as a fuel for 
heating and cooling. The major variables that affect electrical energy, such as system capacity, COP and power consumption, are detailed in Table A2. 
The power consumption was 770 W in cooling mode when the Ta is 27 ◦C DB/19 ◦C WB, and the outdoor air temperature is 35 ◦C DB/24 ◦C WB [52]. 
The system performs on/off control based on setpoint temperature and has deadband of 2 ◦C. 

In the experiment, the room air temperature was controlled according to the set temperature signal, and the fan speed was fixed to low mode. The 
electrical energy of the system was calculated based on the voltage output through the current sensor (described in Table 2) that measures the AC/DC 
currents as analog values.  

Table A2 
Air conditioning system specification  

System specification PTHP 

Model Carrier CSV-Q075BI 
Total air-conditioned floor area (m2) 22.8 
Capacity Cooling capacity (kW) rated: 2.80 (min:1.25/max: 3.20) 

Heating capacity (kW) rated: 3.50 (min:1.20/max: 4.50) 
COP Cooling 3.64 

Heating 3.89 
Power consumption Cooling (kW) 0.77 

Heating (kW) 0.90 
Power supply Volt/Phase/Hz 220/1/60 
Dimension Indoor (W × H × D) mm 798 × 293 × 240 

Outdoor (W × H × D) mm 550 × 780 × 290 
Weight Indoor (kg) 9.0 

Outdoor (kg) 28.0 
Refrigerant Type R410A 
Control Type On/Off control  
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