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ABSTRACT: Recently, occupant-centric control (OCC) has been attracting attention. Occupancy information is 

essential for OCC; predicting this information enables optimal control of heating, ventilation & air conditioning 

(HVAC) systems. To this end, attempts have been made to develop an occupant number prediction model using 

machine learning. However, most studies have focused on performance comparison between models, and the 

application of hyperparameter optimization has been insufficient. Therefore, in this study, an occupant number 

prediction model was developed, and an optimal model was derived by applying Bayesian optimization and 

Hyperband optimization. Through an analysis of the results, the limitations of the occupant number prediction 

model and the development direction are determined. 

The ground truth data for a medium-sized office building was used for training and the gated recurrent unit (GRU), 

which is mainly used for time series prediction, was employed; it was trained to predict the average occupant 

number after 30 minutes. The GRU model was developed in three ways: a base model, Bayesian optimization 

model, and Hyperband optimization model. 

According to the performance evaluation, the base model had the lowest mean absolute error (MAE) of 0.8646 

person, and the model with Bayesian optimization presented the lowest root mean squared error (RMSE) of 1.7394 

person. Consequently, the model with Bayesian optimization, which has potential for stable predictions, was 

selected as the optimal model. However, all three models showed high prediction accuracy, and the difference in 

performance according to optimization was insignificant. Additionally, the shifting phenomenon in which past 

values were used for the prediction values occurred. These are judged to be due to the uncertainty characteristic of 

occupancy data. Therefore, appropriate output data should be selected for the purpose of using the occupant 

number prediction model. In future research, a control algorithm will be developed to remedy the limitations of the 

prediction model. 
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1. INTRODUCTION 

Recently, research on occupant-centric control (OCC) has been pursued as a method for solving problems related 

to building energy and occupant health. OCC is a control method that provides comfortable indoor environmental 

quality (IEQ) to occupants and minimizes energy consumption (Park et al., 2019). In order to apply OCC to 

buildings, the collection of real-time data on the environment, HVAC system, and occupants is essential. The key 

data among these is the number of occupants. An accurate prediction of this information enables preliminary 

operation and early shutdown of the system, enabling energy savings through efficient system operation (Choi et 

al., 2022; Panchabikesan, Haghighat & El Mankibi, 2021). 

Probabilistic modeling and data-driven methods have generally been used as a means for predicting the number of 

occupants. In particular, the machine learning-based data-driven model can adapt to different occupant schedules 

for each space through learning, and it has been shown to have superior prediction accuracy compared with the 



 

 

probabilistic model. Previous research has shown that artificial neural networks and recurrent neural networks are 

the most prominent among machine learning algorithms (Hunchuk, Sanner & O’Brien, 2019; Kim et al., 2019; 

Schiele, Kopema & Brunner, 2021). The prediction performance of neural network models varies depending on 

the combination of hyperparameters, so various trials and detailed analysis are required during the development 

process. However, in most previous studies, hyperparameter optimization was not considered, and only superficial 

performance comparisons of various learning algorithms were performed. 

Therefore, the purpose of this study is to derive the optimal model for occupancy prediction by applying various 

hyperparameter tuning methods during the development stage. For the machine learning algorithm, a gated 

recurrent unit (GRU), which presents rapid learning and excellent performance in time series prediction, was 

adopted, and for the hyperparameter tuning method, Bayesian optimization and Hyperband optimization were 

applied. The results of this study determine the optimal hyperparameter tuning method and provide occupant 

number prediction through an analysis of the results. 

2. METHODOLOGY 

2.1 Research method 

In this study, the open dataset provided by Luo et al. (2022) was used for the development of the occupant number 

prediction model. The building being studied is a medium-sized office building with a total floor area of 10,400 m2 

located at the Lawrence Berkeley National Laboratory (LBNL). The dataset provides occupant number data for a 

specific zone between May 2018 and February 2019. The time step of data is 1-minute intervals. The input data 

were created by adding information about weekday, hour, and minute to the data, and data pre-processing was 

performed. The prediction model was developed with GRU, and the model that presented the best performance 

was derived by comparing the prediction accuracy between the base model, the Bayesian optimization model, and 

the Hyperband optimization model. A summary of the research method is shown in Fig. 1. 

  

2.2 Data preprocessing 

 The data preprocessing was divided into five steps: data extraction, temporal information addition, input and 

output data generation, normalization, and data segmentation processes.  

First, data extraction was conducted on data for the number of occupants between June 2018 and November 2018. 

The interval between data points in the extracted data is 1 minute, and the total number of data points is 262,081. 

Second, the weekday, hour, and minute data, which are temporal information, were added to the occupant number 

data. In the case of offices, most show a regular pattern of occupancy for the weekday and daily schedules, and the 

number of occupants is affected by the office schedule. Therefore, in order to predict the future occupant number, 

temporal data should be included in the input data. 

Third, to construct the input and output data, a prediction target was selected, and a sequence of input data was 

generated. Because the occupancy prediction model will be applied to predictive HVAC control, the average 

occupant number of 30 minutes after, which is the following HVAC control cycle, was selected as the output data. 

The reason for predicting the average value rather than the occupant number after 30 minutes is that the larger the 

Fig. 2 Research method Fig. 1 Research method 



 

number of occupants, the more important the size of the occupant number and the trend in increase or decrease 

rather than the exact number of occupants. In the case of input data, data collected at 5-minute intervals were used 

because the learning time would be longer if historical data at 1-minute intervals were used, and a window size of 

12 which is the number of historical data was set to reflect the history of the past hour. 

Fourth, because there are no negative numbers in the time and occupant number data, the min-max scaler was 

applied during data normalization to obtain a value between 0 and 1. 

Finally, data preprocessing was completed by dividing the normalized data into 60%, 20%, and 20% portions, 

respectively, to generate the train, validation, and test datasets. Because the number of occupants represents a 

continuous value with respect to time, random shuffling was not applied. The preprocessed data structure and 

prediction target are summarized in Fig. 2. 

Fig. 2 Structure of input and output data 

 

2.3 Development of occupancy prediction model  

This study employed the GRU model, which has been adopted in various time series prediction problems. GRU 

was proposed by Cho et al. (2014) as a type of recurrent neural network. Relative to long short-term memory 

(LSTM), which is advantageous for long-term memory, GRU has a simple structure and few parameters, so it is 

known to have a fast training speed and excellent predictive performance. GRU consists of a reset gate and an 

update gate. The reset gate decides how much past information to remember, and the update gate decides the ratio 

for the representation of the previous state and the current state. These processes are explained as Eqs. (1) to (4): 

𝑟𝑡 =  𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1) (1)   

𝑧𝑡 =  𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1) (2) 

ℎ̃𝑡 = tanh (𝑊𝑥𝑡 + 𝑟𝑡⨀𝑈ℎ𝑡−1) (3) 

ℎ𝑡 = 𝑧𝑡⨀ℎ𝑡−1 + (1 − 𝑧𝑡)⨀ℎ̃𝑡 (4) 

where x is the input data, h is the hidden state, and W and U are weights for the input data and the hidden state, 

respectively. At time step t, the results of the input variable that passed the reset gate and the update gate in the past 

hidden state are 𝑟𝑡 and 𝑧𝑡, respectively. ℎ̃𝑡 means information in memory to be used at the present time by 

determining the data to be forgotten from the past hidden state and adding this value to the current input data. ℎ𝑡 

calculates the information in memory to finally be output by synthesizing the calculated values. 

A base model was developed to compare prediction accuracies according to optimization technique. The base 

model consisted of an input layer, one GRU layer, and an output layer, and the number of neurons in the GRU layer 

was 50. The activation function was ReLU, the loss function was the mean squared error (MSE), and the learning 

rate was 1e-4. The batch size was set to 12, and of the number of epochs was set to 100. Additionally, the 

EarlyStopping callback was applied to prevent overfitting. 

 

2.4 Hyperparameter optimization  

Neural network models exhibit different predictive performances depending on the values of their 

hyperparameters. However, it is difficult to test all combinations of hyperparameters, and standardized tuning rules 

have not been determined. Grid search and random search methods are commonly used, but they have the 

disadvantage that the search takes a long time, and it is difficult to find the optimal combination of 

hyperparameters. 



 

 

Therefore, in this study, hyperparameter tuning was performed by applying more advanced methods: Bayesian 

optimization and Hyperband optimization. Bayesian optimization probabilistically explores hyperparameter 

combinations based on a Gaussian process and performs an effective search by reflecting the previous results in the 

next search (Choi et al., 2022). However, it presents a problem in that tuning takes a long time, and overfitting may 

occur if the result is greatly affected by the hyperparameter values. Hyperband optimization is specialized for 

parallel computation, and it randomly extracts various combinations within a given hyperparameter range and 

finds the hyperparameter combination having the best performance based on the successive halving algorithm 

(SHA). Compared with Bayesian optimization, search time is saved, but because hyperparameter combinations are 

randomly extracted, the optimal value cannot be guaranteed when the range of combinations is large. In this study, 

the number of hidden layers, number of neurons, dropout rate, activation function, and learning rate were selected 

as hyperparameters for optimization. Table 1 presents the search range for each hyperparameter. 

 

Table 1 Types of hyperparameters and ranges 

Hyperparameters Ranges 

Number of hidden layers 0–3 

Number of neurons 10–100, step = 2 

Dropout rate 0–0.5, step: 0.1 

Activation functions tanh, sigmoid, ReLU 

Learning rate 1e-10–1e-4 

 

3. RESULTS AND DISCUSSIONS 

3.1 Prediction accuracy of the occupancy prediction models  

The base model (Case 1), Bayesian optimization (Case 2), and Hyperband optimization (Case 3) were used to train 

the model, and a performance evaluation was performed using the test data that were not used for training. The 

evaluation metrics were mean absolute error (MAE) and root mean squared error (RSME), which are based on the 

error between the actual value and the predicted value. The closer the two indicators are to 0, the better the 

prediction performance. Fig. 3 shows the learning state for each case. No overfitting occurred in any of the three 

models, and training was terminated without exceeding 20 epochs. This was due to the EarlyStopping callback; 

thus, training was done rapidly. 

Fig. 3 Loss value for each case 

 

Table 2 presents the combination of hyperparameters used for optimization, and the MAE and RMSE values 

measured on the test data. The optimal structure for Case 2 was 5 hidden layers, and the number of neurons per 



 

hidden layer was 10, 100, 10, 10, and 100. The dropout rate, activation function, and learning rate were set to 0, 

tanh, and 0.0001, respectively. The optimal structure for Case 3 consisted of three hidden layers with 86, 22, and 48 

neurons, respectively. The dropout rate and activation function were identical to those used for Case 2, and the 

optimal learning rate was 0.0022. 

Both the MAE and RMSE demonstrated outstanding prediction accuracy by all three models. Considering that the 

number of people included in the test data was approximately 30, an MAE of less than 1 indicates high prediction 

accuracy. Although the difference in the metric values for each model was insignificant, Case 1 achieved the 

lowest MAE of 0.8646 person, and Case 2 achieved the best RMSE of 1.7394 person. The RMSE was selected as 

the metric for determining the optimal predictive model. Because RMSE is calculated by taking the square root of 

MSE, if the absolute value of the error is large, the value is calculated proportionately. Therefore, a low RMSE 

indicates that relatively few large errors occurred, and that stable prediction is possible. Therefore, the optimal 

occupant prediction model was determined to be Case 2.  

 

Table 2 Results of training 

 

Fig. 4 summarizes the comparison results for the actual value and the predicted value on the test data. Predicted 

values follow the actual values well overall, but according to the graph on the right, which shows time steps 

(5,500– 6,000), a relatively large error occurred for Case 3 as compared with Case 1 and Case 2. In addition, by 

referring to the graph, it is possible to define problems that are commonly found in the three cases. First, the 

predicted value reflects the increase and decrease trend well, but oscillation occurs. Second, a shifting 

phenomenon occurs in which the t-1th actual value is used as the tth predicted value in the section where the number 

of occupants changes unexpectedly. As a result of various previous studies and data investigations, these two 

phenomena frequently occur when a recurrent neural network is used for time series prediction. This is because it 

is impossible to accurately predict the future if the future prediction target does not have special regularity and the 

probabilities of increase and decrease are the same. The occupant number data fits this description. Although the 

office shows a distinct pattern for commuting time and lunch break, the time at which an event occurs is not always 

fixed, and the occupant number at this time is also not constant. Because this corresponds to the natural 

characteristics of the prediction target, it is important to understand the limitations of the occupancy prediction 

model and apply it appropriately for the purpose of use. 

 

 

Cases Hyperparameters Metrics 

Structure Dropout 

rate 

Activation 

function 

Learning 

rate 

MAE RMSE 

Case 1  

(Base model) 

6-50-1 0 ReLU 0.0001 0.8646 

person 

1.7560 

person 

Case 2 

(Bayesian optimization 

model) 

6-10-100-10-10-100-1 0 tanh 0.0001 0.8684 

person 

1.7394 

person 

Case 3 

(Hyperband optimization 

model) 

6-86-22-48-1 0 tanh 0.0022 0.9105 

person 

1.7753 

person 



 

 

 

4. CONCLUSION 

Recently, as interest in OCC has increased, the importance of occupant number prediction has been emphasized. 

Although various machine learning-based occupant number prediction models have been developed, most of them 

are focused on performance comparison between machine learning models. However, there has not been enough 

research done on performance improvement by optimization. Therefore, the purpose of this study is to apply 

various optimization techniques in the development stage of the occupant number prediction model and to derive 

the optimal model. Additionally, the limitations of the occupant number prediction model and future research 

directions are mentioned. 

GRU was used as the machine learning model, and three models were developed. The base model, Bayesian 

optimization, and Hyperband optimization models were respectively applied to optimize the hyperparameters. The 

performance evaluation on the test data showed that the base model had the best MAE of 0.8646 person, and the 

model to which Bayesian optimization was applied showed the best RMSE of 1.7394 person. Finally, the model to 

which Bayesian optimization was applied was selected as the optimal model, considering its prediction stability. 

 

Fig. 4 Comparison of actual and predicted value 



 

All three models presented outstanding prediction accuracy. However, although the hyperparameter optimization 

was applied, the performance differences of the three models were insignificant. It was found that, the reason was 

due to the uncertainty characteristic of the occupant number. Also, a shifting phenomenon occurred intermittently, 

which was also considered to be due to the uncertainty characteristics. Therefore, in future work, alternative 

proposals that would address these limitations, and research on the development of control algorithms should be 

conducted. 
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