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A B S T R A C T   

Occupant information is being actively introduced into building control to create a comfortable indoor envi
ronment and ensure effective building operation. The occupants’ clothing information is a key factor influencing 
the thermal sensation and must be considered in comfort-based control. Considering these aspects, this study was 
aimed at comprehensively analyzing the influence of PMV-based control with real-time clothing insulation (R- 
CLO) on the thermal comfort and system power consumption in different seasons and attires. To this end, a 
vision-based R-CLO model was advanced, by including stages for person-detection and for garment detection and 
classification. PMV-based control with the R-CLO model was performed on seven ensembles of winter clothing. 
The winter experiment results were evaluated and compared with the summer results reported in the previous 
study to analyze the experimental findings by season. The error of the R-CLO model in estimating the clothing 
insulation was as low as 0.04 clo. Through PMV-based control considering real-time clothing insulation, the 
occupants’ thermal comfort was enhanced in both summer and winter compared to the existing control methods. 
Additionally, each 0.1 clo reduction in summer saved average power consumption by 16%, whereas each 0.1 clo 
increase in winter reduced average power consumption by 13.7%. The existing control strategies appear to 
prioritize energy over comfort, particularly during the winter. Overall, real-time clothing information can be 
used for building system control to improve thermal comfort. Furthermore, this study indicates that additional 
research should be focused on enhancing the system’s energy efficiency while appropriately considering the 
thermal comfort.   

1. Introduction 

The occupant information must be considered when assessing the 
indoor environment quality and building energy efficiency [1–3]. 
Building control based on accurate occupant information can promote 
the efficient use of building energy according to occupant needs [4,5]. 
With recent advancements in the internet of things and sensing tech
nologies, researchers have focused on occupant-centric control (OCC), a 
building control strategy that takes into account the occupant infor
mation such as the presence, count, and preferences of occupants [4, 
6–9]. OCC can help prevent inappropriate system operation while 
providing occupants with a customized comfort environment. 

The thermal comfort and preferences of occupants must be consid
ered in building control to minimize the occupant discomfort [10]. 
Among the models that quantitatively evaluate the thermal comfort, the 
predicted mean vote (PMV) is a representative index that is used 
worldwide [11–13]. In addition to environmental factors such as the air 

temperature (Ta), relative humidity (RH), mean radiant temperature 
(Tr), and air velocity (Va), PMV takes into account the metabolic rate (M) 
and clothing insulation (Icl) [14]. Comfort-driven control considering 
the PMV as a control variable is widely implemented in real buildings; 
however, the personal factors are typically set to an arbitrary default 
value [15–18]. If information regarding the occupants’ activities and 
clothing is not considered, the use of PMV cannot ensure the compre
hensive consideration of the thermal comfort. Therefore, it is necessary 
to measure dynamic personal factors to provide accurate information 
regarding the thermal comfort of occupants, and this aspect has been 
widely investigated [19–23]. 

Clothing insulation refers to the insulation value of the combination 
of individual garments worn by a person. This insulation is a dynamic 
variable that changes depending on the type, material, and layers of 
clothing and considerably influences thermal comfort and health [12, 
24]. The exact insulation value of clothing can be measured using a 
thermal manikin in a thermal environment. However, this method is not 
suitable for the real-time measurement of every clothing item worn by 
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occupants in real buildings [25,26]. Therefore, various approaches have 
been proposed for estimating the dynamic Icl of an occupant in a 
building, such as data-driven models (i.e., regression model) [27–30] 
based on environmental factors or deep learning models based on 
thermal images [30–32] and RGB images [23,31,33–35] recorded using 
a non-invasive vision sensor. The RGB-image-based technique is a 
promising strategy for actual buildings because it can measure the Icl 
indirectly and objectively in real-time without requiring occupant 
intervention. 

Notably, to evaluate the practical applicability of the vision based Icl 
estimation method, it is necessary to assess the influence of the comfort 
control based on the Icl on the thermal comfort and system energy use. 
However, the existing research on PMV-based control in indoor envi
ronments using the vision-based Icl estimation method is limited and 
being conducted recently [23,35]. Prior to conducting this study, the 
same research team of Choi et al. [22] assessed the effect of real-time 
clothing insulation on energy use and thermal comfort by the summer 
experiment. The authors demonstrated that the use of the real-time Icl 
information can help enhance the occupants’ thermal comfort, however, 
they did not perform a seasonal analysis. The effect of such control on 
the thermal comfort and power consumption may differ across seasons 
(owing to changes in the indoor clothing types and system operating 
conditions). Therefore, comparative analyses must be performed across 
seasons, including diverse garments to determine how the PMV-based 
control reflecting the actual Icl affects the thermal comfort and power 
consumption. 

The present study was aimed at experimentally analyzing the impact 

of real-time Icl on the indoor thermal comfort and system power con
sumption during cooling and heating periods. The novelty of this study 
is that the additional experiment was conducted in the heating period 
and the experimental results were compared to those of the cooling 
season. By conducting comprehensive evaluations under various seasons 
and clothing conditions, the necessity of considering the real-time in
formation of occupant clothing insulation is highlighted, and results that 
are generalizable across seasons are obtained. 

For increasing its applicability to real buildings, the vision-based 
model for estimating real-time clothing insulation (R-CLO) developed 
by Choi et al. [23,36] was extended in this study by adding a function to 
detect individual occupants and enhancing the model performance. The 
classification performance of the model for winter clothing was 
enhanced, and comfort-based control was implemented with seven 
combinations of clothing. The results of thermal comfort and system 
energy use were compared with those obtained using existing control 
methods to verify the applicability and effectiveness of the proposed 
method in practical settings. 

The process flow of this research can be summarized as follows 
(Fig. 1): The novelty of the proposed technique against the existing 
methods for estimating clothing insulation is highlighted (Section 2). 
The performance of the advanced R-CLO model re-trained on the 
augmented clothing dataset and control algorithm are evaluated (Step 
A), as discussed in Sections 3.1–3.2. Section 3.3 presents the experi
mental method (Step B). Section 4 presents the results of the experiment 
in winter settings, and the seasonal aspects are discussed in Section 5 by 
comparing the results of experiments in winter and summer settings. 

Nomenclature 

Ta air temperature [◦C] 
Tset setpoint temperature [◦C] 
RH relative humidity [%] 
Tr mean radiant temperature [◦C] 
Va air velocity [m/s] 
Icl clothing insulation [clo or m2 ㆍK/W] 
Iclu garment insulation [clo or m2 ㆍK/W] 
M metabolic rate [met or W/m2] 
PMV predicted mean vote 
TSV thermal sensation vote 

TSVr relative TSV 
ASHRAE American Society of Heating, Refrigerating and Air- 

Conditioning Engineers 
ISO International Organization for Standardization 
OCC occupant-centric control 
DBT dry-bulb temperature 
R-CLO real-time clothing insulation 
CNN convolutional neural network 
YOLO You Only Look Once 
CNN convolutional neural networks 
B-box bounding box 
PTHP packaged terminal heat pumps  

Fig. 1. Research process.  
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2. Literature review 

This section describes the existing methods for estimating the 
clothing insulation. In addition, research on implementing comfort 
control based on the PMV (that reflects R-CLO) is described to highlight 
the novelty and significance of this study. 

2.1. Methods to estimate the clothing insulation 

The clothing considerably influence occupants’ thermal comfort [12, 
24]. Therefore, precise information regarding the clothing insulation 
must be obtained to implement comfort-based building control. Inter
national standards such as ISO 9920 [37] and ASHRAE standard 55 [12] 
provide the thermal insulation values for different types of garments 
(such as daily and work attire) with different materials (Iclu), measured 
using thermal manikins. 

Notably, in actual buildings, people may alter their clothing in 
response to psychological and social circumstances or a behavioral 
regulation based on the thermal sense [38]. Real-time measurement of 
Icl is challenging because it requires expensive equipment, time, and 
intervention of the occupants. Therefore, various studies have focused 
on measuring or estimating the clothing insulation. 

In the early research on Icl estimation, data-driven regression models 
were developed to predict the mean daily Icl based on environmental 
data such as external temperature (on average or specific time), oper
ating temperature, and dew point temperature [27,28,30,39]. These 
models could obtain the representative Icl of one day, which was an 
improvement over the traditional approach in which an arbitrarily 
chosen constant value was applied. Nevertheless, the model accuracy 
was limited, and these models could not be used for time-based control. 
Therefore, to replace the daily average value, a new method for esti
mating the Icl across time periods is necessary. 

Recently, various modeling techniques such as deep learning and 
computer vision have been applied to measure the Icl in real-time. In 
these techniques, an image, typically, a thermal or an RGB image, is used 
as the input variable. Lee et al. [31] and Liu et al. [21,34] used thermal 
images to estimate the Icl based on the skin and clothing temperatures. In 
addition to the thermal images, numerous studies have been conducted 
to categorize different types of clothes using RGB images [23,35,40–42]. 
In most of these studies, the type, weight, or covered body surface area 
of clothes in an image were assessed using a computer vision technique 
based on convolutional neural networks (CNNs). Dziedzic et al. [41] 
presented a method for determining the clothing factor by recognizing 
the area of clothing surface, and Watanabe et al. [42] proposed a new 
approach for calculating Icl by estimating the weight of clothes from an 
image. Additionally, Choi et al. [35] presented a vision-based model that 
classified five clothing combinations with an average accuracy of 86%. 

Notably, in the existing studies, a person’s entire clothing ensemble 
was categorized into a single class [35], or the top category was the only 
class that included classifiable garments [21,34]. Recently, Choi et al. 
[23,36] developed an R-CLO model that can estimate the Icl of various 
combinations of clothing based on RGB images, by individually classi
fying garments such as tops and bottoms. The model exhibited an 
average Icl error for the entire ensemble for 0.03 clo. Based on this 
model, an extended R-CLO model is developed in this study, which is 
expected to be more practical as it includes a person detection stage to 
enhance the model performance. 

2.2. Comfort control based on clothing insulation 

The PMV index is the most widely used variable for comfort control. 
However, Icl is typically set to 0.5 clo in summer and 1.0 clo in winter 
[16,43]. As described in Section 2.1, various methods to measure Icl 
have been developed. However, research on comfort-based control 
considering real-time Icl is limited [23,35]. 

In the existing studies on comfort-based control with the R-CLO 

framework, a vision-based model with high field applicability was used 
[23,35]. According to tests on PMV-based HVAC control using real-time 
Icl for six male participants in three ensemble scenarios, the thermal 
comfort is higher than that achieved using conventional PMV control 
with default Icl values [35]. However, to emphasize the effect and utility 
of clothing information for comfort control, it is necessary to derive 
results with a larger number of participants and various clothing com
binations. To this end, a comfort-based control experiment with the 
R-CLO model was conducted in summer with 15 participants and nine 
clothing combinations by Choi et al. [23]. These experiments helped 
clarify the influence of the R-CLO on the system’s power consumption 
and occupants’ thermal comfort. The results demonstrated that the 
participant’s PMV and thermal sensation vote (TSV) were improved 
when the R-CLO was considered, and the system consumed more power 
as Icl increased. 

Nevertheless, additional experiments must be performed for heating 
periods and a comparative analysis must be performed for seasonal data 
because the indoor clothing types and system operating conditions vary 
across seasons. Therefore, to determine the variations in the thermal 
comfort and power consumption across seasons, a comfort control 
experiment based on the R-CLO was conducted in this study. 

3. Methods 

This section describes the main process and conditions of the 
experiment. The updated R-CLO estimation approach, which consists of 
the occupant detection and garment classification stages, is described in 
Section 3.1.1. The advanced R-CLO model, which outperforms the 
original model in terms of winter clothing, is described in Section 3.1.2. 
Section 3.2 describes a system control algorithm based on PMV with R- 
CLO. The experimental methodology, including sensor equipment, 
control mechanism, process, and participant information, is described in 
Section 3.3. To ensure a fair comparison with the experiment conducted 
during the cooling period, the experimental procedures and basic con
ditions were the same as those adopted in the previous study [23]. 

3.1. Estimation of real-time clothing insulation 

3.1.1. Process of R-CLO estimation 
The R-CLO model can classify specific types of clothing worn by an 

individual in real-time from an RGB image captured by a camera. 
However, to apply this model to an indoor environment with multiple 
occupants, it is necessary to detect occupants before estimating the Icl 
value for each person [21]. 

Accordingly, the R-CLO estimation process was divided into two 
stages, as shown in Fig. 2. Stage 1 was aimed at detecting individuals in 
the image and cropping the background to generate a human bounding 
box (B-box) image. In Stage 2, every piece of garment worn by a person 
in the B-box were detected, and the types of the individual garments 
were classified. Through the addition of Stage 1, these two objectives 
can be satisfied: 1) infer the exact clothing combination worn by a 
specific occupant; 2) estimate the Icl for each person in multi-occupant 
situation. These functions demonstrate the high applicability of the 
model. 

You only look once (YOLO) v5 [44] was used as the main network 
structure for both stages. By replicating the human visual system, the 
CNN-based YOLO network that processes two-dimensional data can 
detect objects with only one image. This network can be applied for the 
real-time estimation of the occupant Icl in actual buildings as it can 
rapidly detect objects. Therefore, YOLOv5 network was used for model 
development in this study. The released YOLOv5 network [44] con
taining trained parameters was used in Stage 1. In Stage 2, only the 
YOLOv5 structure with no trained parameters was used, and it was 
trained with diverse clothing image data to allow it to detect and classify 
individual garments. 
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3.1.2. Advanced R-CLO model for winter clothes 
In this study, an advanced R-CLO model was developed by retraining 

the initial R-CLO model [23] on additional winter clothing data. To 
enhance the model performance for the heating period experiment, 
additional data for winter clothing were collected. The advanced model 
was retrained with the increased image dataset including garments with 
high insulation value such as a long-sleeve shirt, a long-sleeve sweat
shirt, a long-sleeve sweater, trousers, an ankle-length skirt, sweatpants, 
and a long-sleeve shirt dress. 

Table 1 is presented to indicate the performance improvement of the 
target classes through additional training. Before being trained over the 
additional dataset, the performance of the initial R-CLO model [23] for 
winter clothes was low, as indicated in Table 1. The performance of the 
advanced R-CLO model for most of the garment type was improved to 
that of the initial model. Notably, the 16 garments that the R-CLO model 
was expected to classify were selected based on the typical garments 
presented by ISO 9920 [37] and ASHRAE standard 55 [12]. The 16 
garments, divided into five representative categories, include Top (G1: 
short-sleeve shirt, G2: long-sleeve shirt, G3: t-shirt, G4: long-sleeve 
sweater, G5: long-sleeve sweatshirt); Bottom (G6: trousers, G7: 

knee-length skirt, G8: ankle-length skirt, G9: walking shorts, G10: 
sweatpants); Outer (G11: suit jacket); Dress (G12: long-sleeve shirt 
dress, G13: short-sleeve shirt dress); and Pajamas (G14: long-sleeve 
pajama top, G15: pajama trousers, G16: short-sleeve pajama top). 

Based on the test dataset, the advanced R-CLO model exhibited an 
average accuracy of 96.8% and over 92% for all clothing categories, as 
indicated in Table 1. Compared with that of the initial model [23], the 
average accuracy was more than 2.0% higher, and the classification 
performance for each garment was up to 13% higher (G12). 

This R-CLO model can flexibly consider various cases of potential 
clothing combinations because it determines the total Icl depending on 
the individual garments worn by the occupants. Thus, in this study, the 
model could classify maximum 34 combinations of clothes involving 
different classifiable garments (i.e., 6 of Top & Outer × 5 of Bottom + 2 
of Dress + 2 of Pajama sets). This approach was more realistic than the 
existing method [31,34,35] that can classify only a particular outfit 
combination. Among the 16 garments that the model could classify, the 
representative clothing ensemble for the heating experiment was set up, 
as indicated in Table 2. These ensembles were selected based on the 
clothing type and insulation values presented in Tables A and B of ISO 
7730 [11] to attain a clothing combination typically worn in offices. The 
highest Icl was set as 1.34 clo because the experiment was conducted in 
winter, and thicker clothing than that used in the summer experiment 
was introduced. 

The clothing used in the experiment is shown in Fig. 3. The 11 types 
of apparel that constitute the ensembles presented in Table 2 are short- 

Fig. 2. Vision-based R-CLO estimation process.  

Table 1 
Garment types and model training performance.  

Label Garment type Accuracy of the R-CLO model 

Initial model 
[23] 

Advanced model 
(proposed) 

G1 short-sleeve shirt 0.96 0.96 
G2 long-sleeve shirt 0.93 0.94 
G3 t-shirt 0.98 0.98 
G4 long-sleeve sweater 0.88 0.93 
G5 long-sleeve sweatshirt 0.90 0.94 
G6 trousers 0.97 0.98 
G7 knee-length skirt 0.97 0.98 
G8 ankle-length skirt 0.94 0.97 
G9 walking shorts 0.96 0.92 
G10 sweatpants 0.92 0.96 
G11 suit jacket 1.00 1.00 
G12 long-sleeve shirt dress 0.81 0.94 
G13 short-sleeve shirt dress 1.00 1.00 
G14 long-sleeve pajama top 1.00 1.00 
G15 pajama trousers 0.96 0.98 
G16 short-sleeve pajama 

top 
0.98 0.98  

Table 2 
Clothing ensembles for the winter season.  

Ensemble Clothing 
insulation (Icl) 

Combination of garments 

E1 0.38 clo t-shirt (G3), walking shorts (G9) 
E2 0.50 clo short-sleeve shirt (G1), walking shorts (G9) 
E3 0.55 clo ankle-length skirt (G8), long-sleeve sweatshirt 

(G5) 
E4 0.63 clo long-sleeve pajama top (G14), pajama trousers 

(G15) 
E5 0.74 clo long-sleeve shirt (G2), trousers (G6) 
E6 1.04 clo long-sleeve shirt (G2), trousers (G6), long-sleeve 

sweater (G4) 
E7 1.34 clo long-sleeve shirt (G2), trousers (G6), long-sleeve 

sweater (G4), suit jacket (G11) 

Essential clothes: underwear, ankle socks, sneakers. 
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sleeve shirt (G1), long-sleeve shirt (G2), t-shirt (G3), long-sleeve sweater 
(G4), long-sleeve sweatshirt (G5), trousers (G6), ankle-length skirts 
(G8), walking shorts (G9), suit jackets (G11), long-sleeve pajama top 
(G14), and pajama trousers (G15). Different clothing items were pur
chased based on the participants’ gender and size, but the fabric 
composition was chosen to be as similar as possible to the insulation 
conditions specified in ISO 7730 [11]. Table A2 in Appendix A presents 
detailed information of the experimental clothing, including the type 
and fabric. In the experiment, the same essential apparel was worn with 
each outfit: ankle socks, footwear, and underwear. 

Although the performance of the developed model was assessed over 
the test dataset, the performance can be differ with the application 
conditions, such as the image resolution, angle, and background. 
Therefore, a pre-test was performed to validate the performance of the 
advanced R-CLO model in the same test bed where the winter experi
ment was performed for the clothing conditions in Table 2. The assess
ment was performed using images recorded once every 5 s while each 
ensemble was worn for 10 min. The pre-test involved five participants 
who maintained a sitting posture on the test bed. The collected images 

were fresh data that were not included in the training and testing 
datasets, allowing the assessment of the model performance in a new 
environment. 

Fig. 4 shows the experimental findings in comparison with those of 
the initial R-CLO model [23]. Based on further training on winter 
clothing, the advanced R-CLO model updated weights and biases, and 
the overall average accuracy was approximately 6% higher than that of 
the initial model. An accuracy of more than 80% was achieved for 8 of 
the 11 garments, and the accuracy for the long-sleeve sweater increased 
by more than 79%. Nevertheless, the performance of the proposed 
model for certain garments, such as pajama trousers, was lower (17%) 
than that of the initial model. This phenomenon occurred because the 
variation in the model parameters resulted in a higher percentage of 
incorrect classifications of “trousers” against “pajama trousers”. How
ever, the difference in insulation was only 0.05 clo, because the two 
garments have comparable shapes and insulation areas. Therefore, it 
was considered important to clarify how these results affect the Icl value 
(which is used to calculate the PMV), as discussed in Section 4.1. 

Fig. 3. Garments used in the experiment.  

Fig. 4. Performance of R-CLO model for winter clothes applying to test bed.  
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3.2. R-CLO model-based control algorithm 

The effects of potential errors will be reflected to the control as is if 
every Iclu data point from the R-CLO model is used for system control. 
Therefore, system control must be performed by selecting the Icl value 
representing a certain control period and minimizing the impact of the 
classification error. To determine the Icl representing the control cycle 
and to control the system based on the PMV with real-time clothing 
information, a control algorithm that includes the R-CLO model was 
developed (Fig. 5). 

This control algorithm involves the following steps: In Step A, the 
time information, indoor RGB images, environmental data (Ta, RH, Tr, 
Va) and system power usage (W) are collected in units of 15 s. In this 
study, the data collection time was set considering the socket commu
nication stability of the camera sensor used in the experiment. Among 
the collected data, the RGB image is input to the person-detection model 
in Step B, and if an occupant exists, the B-box image of the detected 
person is saved. If an occupant is detected, Step C is implemented, i.e., 
the B-box image is used to classify each garment that the occupant is 

wearing using the R-CLO model. The advanced R-CLO model is 
embedded in Step C. If there is no occupant, Step C is skipped. Steps A 
through C are repeated throughout the control cycle (10 min), and the 
results are saved to the server in real-time. 

A representative Icl is chosen at the end of each cycle by combining 
the ensemble with the most frequently classified garments for 10 min 
(Step D). For instance, if the classification percentages of t-shirt (Top) 
and working shorts (Bottom) are 95% and 93%, respectively, the oc
cupant’s entire outfit is regarded as an ensemble of t-shirt and working 
shorts, and the representative Icl of that cycle is 0.38 clo. The total Icl is 
obtained using Equation (1) recommended by ISO 9920 [37], with 
reference to the work of McCullough et al. [45]. In numerous field 
studies in which direct measurement was rendered challenging, the 
clothing insulation has been estimated using Equation (1) [46,47]. 

Icl = 0.161 + 0.835
∑

Iclu (1)  

In Step E, the PMV of the current control cycle is calculated using the 
representative Icl obtained in Step D and average values of the indoor 
environmental variables collected in Step A. Based on the calculated 
PMV, the ideal setpoint temperature (Tset) that will produce PMV = 0 for 
the next control cycle is determined. Assuming that the current envi
ronmental and individual variables are maintained except for Ta and Tr 
(Tr is set to have the same value as Ta) the temperature that is closest to 
PMV = 0 is chosen as Tset within the operating range of the heat-pump 
(18–30 ◦C). Lastly, an IR signal containing the newly constructed Tset is 
transmitted to the air-conditioning system. For example, if the envi
ronmental data in Step A are Ta: 20 ◦C, RH: 40%, Tr: 21 ◦C, Va: 0.01 m/s 
and the personal data are M: 1.0 met, Icl: 0.74 clo (from Step D), the 
current PMV is − 1.4. Assuming Ta and Tr are equal, a value between 
18 ◦C and 30 ◦C is input to identify that with the PMV closest to 0. This 
value is set as Tset for the next control cycle. In the considered example, 
the next Tset is 25 ◦C. 

3.3. Experiment 

3.3.1. Process 
Fig. 6 schematically represents the test bed configuration and details 

of the sensors, air-conditioning system, and system control methods. The 
experiment was conducted in the same test bed as that used in the 
summer experiment. Two rooms measuring 2.7 m × 2.0 m × 2.2 m 
constituted the test bed inside the building. A server was placed outside 
of the room to collect data and control the system with the R-CLO model- 
based control algorithm. 

Each room had an integrated sensor module for collecting informa
tion regarding the indoor environment, RGB images, and current data of 
the air-conditioning system. Fig. 6 shows each sensor and its specifica
tions. The camera sensor installed at a height of 1.7 m simultaneously 
gathered images from two angles, and the environment sensors placed in 
the middle of the indoor wall at a height of 1.2 m measured the indoor 
Ta, RH, Tr, and Va. The power meter connected to the air conditioning 
system measured the electric current data. All sensors were calibrated 
before the experiment. Raspberry Pi and Arduino, single-board com
puters capable of TCP/IP communication and real-time data collection, 
were used to store the data every 15 s in the server. The server deter
mined a control signal for each control cycle based on the stored data 
and transmitted it to the IR sensor installed next to the system. 

Inverter-type packaged terminal heat pumps (PTHP) were installed 
in the test bed for heating and cooling, in the room’s upper left corner. 
PTHP, a wall-mounted product, has a coefficient of performance of 3.64 
(cooling) or 3.89 (heating), capacity of 2.80 (cooling) or 3.50 kW 
(heating), and power consumption of 0.77 (cooling) or 0.90 kW (heat
ing), respectively. The system had an on/off control scheme that could 
regulate the indoor temperature with a 2 ◦C deadband of the setpoint. 

Three control methods were established, as shown in Fig. 6. Cases 1 
and 2 were traditional system control methods that have been Fig. 5. R-CLO model-based control algorithm.  
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commonly applied in buildings, and Case 3 was the proposed control 
method based on the R-CLO. Specifically, Case 1 controlled the system 
based on the dry-bulb temperature (DBT). Only the room temperature 
was measured and regulated in accordance with the heating setpoint of 
22 ◦C. Case 2 involved comfort control based on the PMV. The PMV was 
calculated using the measured environmental variables Ta, RH, Tr, and 
Va, but the two personal factors were set as 1.0 met and 1.0 clo. Case 3 
used a PMV-based comfort control strategy as well. However, the 
clothing insulation was estimated in real-time with the R-CLO model, 
whereas M was set as 1.0 met. The setpoint in Cases 2 and 3 was set as 
PMV 0.0. 

The experiment was conducted for 40 min for each ensemble listed in 
Table 2, and the control cycle was set as 10 min. At 10, 20, and 30 min, 
the room temperature was adjusted by receiving a control signal in 
accordance with the control methods. The participants sat in the middle 
of the test bed during the experiment for maintaining M at 1.0 met and 
performed tasks such as reading, writing, and observing. The partici
pants were dressed as required according to the ensemble condition. 

3.3.2. Participant information 
Twenty-three participants were recruited, including 12 males and 11 

females aged 20–30 y. Table 3 presents the information of the partici
pants. People with a BMI in the normal range (18–23 kg/m2) were 

enlisted to eliminate the influence of the BMI on the thermal comfort. In 
the clothing ensemble, one additional case E3 was included for female 
participants. Therefore, the experiments for the female and male par
ticipants were conducted for 840 and 720 min, respectively. The 
experiment was performed in winter 2022, from January to March. The 
subjective TSV of the participants were measured and compared with 
the estimated PMV. A point-in-time survey (among the thermal sensa
tion surveys of ASHRAE standard 55) was administered to determine the 
TSV [12], and Google Forms were used to collect the participants’ TSVs 
at 2-min intervals. 

Before the experiment, the participants performed an additional test 
for 5 min to examine their relative TSV (TSVr). The participants wore a 
clothing ensemble corresponding to 1.0 clo (brief/bras and panties, 
socks, sneakers, long-sleeve shirt, trousers), and their TSV was measured 
once every minute for 5 min at a temperature of 22 ◦C, which is a typical 
Tset of DBT-based control in winters. According to the most frequently 
occurring data for 5-min, both male and female participants report 
feeling comfortable (TSVr = 0), with the exception of one male partic
ipant who reported feeling “slightly cold” (TSVr = − 1). Overall, most 
participants felt similarly warm and were thermally neutral at the same 
conditions of 22 ◦C and 1.0 clo. Detailed information of the recruited 
participants and pre-test results is presented in Table A1. 

4. Results of the winter experiment 

This section describes the results of experiments performed in the 
heating period. Section 4.1 discusses the accuracy of the R-CLO esti
mation for Case 3, and Section 4.2 describes the thermal environment 
and power consumption for seven clothing ensembles. 

Fig. 6. Experiment setup.  

Table 3 
Participant information.   

Height (cm) Weight (kg) BMI (kg/m2) Age 

Mean SDa Mean SD Mean SD Mean SD 

Male 173.9 5.4 65.7 7.1 21.7 2.0 25.0 2.9 
Female 160.6 4.8 51.3 5.2 19.8 1.4 23.9 2.6  

a SD: Standard Deviation. 
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4.1. Performance of the R-CLO estimation 

The performance of the human detection model was assessed in 
multiple occupancy situations before applying it in the experiment. The 
evaluation was conducted in a sperate mockup setting that was not used 
for training, and the number of occupants was increased from one to 
three. The average person detection accuracy of the model was 95%. In 
other word, the model could accurately detect humans in cases 
involving 2–3 occupants. The model accuracy was more than 99% in the 
Case 3 experiment conducted on a single occupant. This high perfor
mance could be attributed to the clean background and absence of any 
elements in test bed that may complicate the detection of occupants. 
Overall, in most instances, an occupant was detected, and the cropped B- 
box image was input to the R-CLO model. 

The R-CLO model detected and classified the clothing that the par
ticipants were wearing. Several results are presented in Fig. 7. Fig. 7(a) 
shows the example of the accurately classified output for each ensemble 
of Step C in Fig. 5. Because the images of the participant on the test bed 
were recorded from two distinct angles, the images for Cams 1 and 2 are 
shown separately in Fig. 7(a). 

Fig. 7(b) shows the types of errors that emerged during the mea
surement. Error 1 corresponds to situations in which some of the clothes 
were not detected owing to the participant’s pose. Although certain 
instantaneous postures may lead to a temporal inaccuracy, clothes may 
be detected correctly in the image obtained from the opposite side. 
Therefore, this error can be compensated using the image measured 
from the opposite side. Error 2 corresponded to scenarios in which a 
garment was erroneously classified as that with a similar insulation area. 
For instance, in the Tops category, a t-shirt (G3) was classified as a short- 
sleeve shirt (G1), and a long-sleeve pajama shirt (G14) was classified as a 
regular long-sleeve shirt (G2). In the Bottoms category, ankle-length 
skirt (G8) and pajama trousers (G15) were classified as regular trou
sers (G6). 

If the rate of occurrence of the same error was not high, it was treated 
as an outlier by the control algorithm (Fig. 5) and did not affect the 

determination of the representative Icl. The results of representative Icl 
by the control algorithm that were determined every 10 min during 
experiments of 40 min per ensemble are shown in Fig. 8. Fig. 8 shows the 
average value of the estimated Icl during the experiment for all partici
pants and the 99% confidence interval of each participant for different 
ensembles. 

The average error for E5 and E7 was 0.1 clo, higher than that of the 
other ensembles. In several instances, long-sleeve shirt (G2) and suit 
jacket (G11) were classified as long-sleeve sweater (G4). The average Icl 
error throughout the experiment was 0.04 clo, and except for E5 and E7, 
all clothing ensembles corresponded to reduced average Icl errors of 0.02 
clo. Overall, the total Icl error was not excessively large. These findings 
highlighted that the impact of the momentary inaccuracy shown in 
Fig. 7(b) can be decreased by applying the control algorithm that esti
mates the representative Icl with the highest classification ratio during 
the control period. 

Fig. 7. Results of the R-CLO model.  

Fig. 8. Accuracy of real-time Icl measured in the experiment.  
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4.2. Experimental results in the heating period 

4.2.1. Thermal environment and comfort in the heating period 
Data recorded between 10 and 40 min of the experiment were 

analyzed, with the first 10 min considered the experimenter’s adapta
tion time. Fig. 9 shows the controlled indoor temperature and thermal 
comfort of the participants based on their clothing ensemble. As shown 
in Fig. 9(a), the indoor temperatures in Cases 1 and 2 did not change 
with Icl, with overall average temperatures of 22.5 ◦C and 24.6 ◦C, 
respectively. The average temperature between the two control methods 
differed by approximately 2 ◦C. In contrast, as the Icl increased from E1 
to E7 in Case 3, the indoor temperature steadily decreased from 26.7 ◦C 
to 24.0 ◦C. In other words, the room temperature was lowered as the 
clothing became thicker. The indoor temperature in Case 3 was the 
highest among the three control methods for all other ensemble condi
tions except E7. 

Fig. 9(b) shows the change in the PMV in the controlled 

environment. The PMV between Cases 1 and 2 differed significantly 
across ensembles. The PMV difference between E1 and E7 was 2.4 (Case 
1) > 1.9 (Case 2) > 0.8 (Case 3). Case 1 was uncomfortable for the oc
cupants in terms of the PMV in all clothing scenarios except E7. The PMV 
of Case 1 was − 2.3, particularly in E1, suggestive of an extremely cold 
environment with a “cold– very cold” rating. The participants expressed 
discomfort in Case 2 when the insulation was 0.64 clo or less (E1–E4) 
because the indoor temperature corresponded to the “slightly cool–cold” 
state. Although a difference of up to 0.8 PMV was observed in Case 3, the 
average PMV remained within an acceptable comfort range regardless of 
the clothing ensemble. This finding highlighted that only Case 3 could 
provide a comfortable indoor environment in every clothing scenario, 
especially in low Icl conditions such as E1–E4. In other words, the pro
posed method corresponded to the most favorable PMV. 

The distributions of all TSV data measured throughout the experi
ment in intervals of 2-min are shown as a box plot in Fig. 9(c) to compare 
the difference between the TSV and PMV results. The boxed area 

Fig. 9. Results of thermal environment and comfort for different control cases.  
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represented 25–75% of the total data. Case 1 showed the widest distri
bution of TSV data in all ensembles except for E5 and E7. The average 
TSVs of E1 and E2 were − 1.0 and − 1.1, respectively, indicating that the 
occupants felt slightly cold. A few participants responded with scores of 
even − 3. Even in Case 2, 50% of the responses in E1 and E2 were be
tween − 1 < TSV <0, and the average TSV was − 0.4. 

The smallest data distribution range was found in Case 3, in which 
constant TSV data were collected. The data for most of the ensembles 
belonged to TSV 0, and the average value, including outliers, ranged 
between − 0.3 and 0.2. Specifically, Case 3 provided the occupants with 
the highest level of actual thermal comfort across all clothing conditions 
among the three control methods. 

The average TSV showed a higher value than the calculated PMV 
(Fig. 9(b)). In the case of E1, for instance, the PMV was estimated to be 
− 2.4 in Case 1, but the average TSV was − 1.0. Additionally, the average 
TSV was − 0.5 or higher for the range of − 1.4 to − 0.5 PMV. This finding 
demonstrated that even if the PMV is estimated as a value slightly 
beyond the comfort range, the comfort of the occupants would be 
maintained. 

Case 3 demonstrated PMV-based control capabilities comparable to 
the occupant’s TSV. Specifically, the occupants were comfortable when 
the PMV was within the comfort zone. This finding highlighted that the 
comfort of the actual occupants can be satisfied while reducing the 
power consumption even if the PMV setpoint of the heating period is set 
to be lower than zero without deviating from the comfort range. How
ever, this phenomenon occurs only in control methods such as Case 3 in 
which the actual TSV can be matched to the PMV setting. 

4.2.2. Power consumption in the heating period 
The power consumption for 30 min during the heating experiment 

was evaluated to examine the energy requirements for different control 
methods. The results are shown in Fig. 10. The total power required for 
each ensemble is shown in Fig. 10(a), and Fig. 10(b) provides examples 
of certain participants wearing ensembles E1 and E7 to clarify the power 
consumption per minute. 

Regardless of the Icl, the average total power consumption for Cases 1 
and 2 was maintained at 125.4 Wh and 144.2 Wh, respectively (Fig. 10 
(a)). Approximately 15% more power was used in Case 2 than in Case 1. 
In contrast, Case 3 exhibited a notable variance in the power con
sumption based on the clothing insulation. Among the three cases, Case 
3 exhibited the largest power consumption in E1 to E5 with low Icl. The 
power consumption was 75–162% and 44–133% higher than those in 
Cases 1 and 2, respectively. Case 2 consumed the most power in E6 and 
E7. For E7 (maximum Icl), the power consumption in Case 3 was 23% 
and 27% lower than those in Cases 1 and 2, respectively. In other words, 
the power consumption in Case 3 with insulation values higher than 1.0 
clo was lower than that associated with traditional methods. 

The power consumption in Case 3 for E4 was higher than for E3 
because on many days, the outside temperature in Case 3 was low during 
the experiment. To examine the variation in the power consumption, the 
rate of change in power consumption in units of 0.1 clo was determined. 
Except for E4, the power consumption reduced by approximately 11.6% 
for an increase of 0.1 clo. 

The trend of the power consumption was similar to that of the indoor 
temperature but not exactly proportional. For E1, the average indoor 
temperatures in Cases 1, 2, and 3 were 22.6 ◦C, 24.9 ◦C, and 26.7 ◦C, 

Fig. 10. Power consumption results.  
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respectively (Fig. 9(a)). Although, the temperatures in Cases 2 and 3 
were 2 ◦C and 4 ◦C higher than that in Case 1, the power consumption 
was 16.9 Wh and 179.1 Wh higher, corresponding to a difference of 10 
times. This difference likely occurred because the initial temperature of 
the test bed was set as 22 ◦C before the experiment. The power con
sumption rapidly increased to raise the room temperature in the early 
stages when the difference between the indoor Ta and Tset was large. 

This phenomenon can be explained by Fig. 10(b). Fig. 10(b) shows 
the variation in the room temperature and power consumption at 2-min 
intervals in the E1 (0.38 clo) and E7 (1.34 clo) experiments of a specific 
participant. For E1 (0.38 clo), Case 3 set the indoor temperature to 29 ◦C 
considering Icl. Thus, the initial power consumption increased rapidly 
compared with those in the other two control methods. For E7 (1.34 
clo), Tset was 23–24 ◦C, and the power consumption decreased first 
among the control methods. Later, the system’s standby power was used. 

5. Comparative analysis in seasons 

By integrating the results of the cooling period [23], the PMV-based 
control strategy associated with the R-CLO was analyzed to highlight 
seasonal variations. The variation in the occupants’ thermal comfort and 
power consumption were also assessed. Five ensembles that were 
equally worn in both experiments were used to compare the results for 
the two seasons. The Icl values of the five clothing ensembles were 0.38 
clo, 0.50 clo, 0.55 clo, 0.74 clo, and 1.04 clo. Thirty-eight participants 
were involved in the experiment, with 23 and 15 subjected to heating 
and cooling, respectively. The average outdoor temperature was 2.2 ◦C 
and 24.7 ◦C in the heating and cooling periods, respectively. 

5.1. Thermal environment and comfort 

Tset was determined differently depending on the control method. In 
Case 1, Tset of the cooling and heating periods were fixed as 25 ◦C and 
22 ◦C, respectively. In Case 2, Tset was set as 26 ◦C in the cooling period 
and in the range 23–26 ◦C in the heating period. In Case 3, the cooling 

and heating temperatures were varied as 23–27 ◦C and 21–29 ◦C, 
respectively. Because the R-CLO and environmental variables were 
considered, the range of Tset was the widest for Case 3, among the 
control methods. 

The change in the indoor temperature according to the Tset for each 
control case is shown on the left side of Fig. 11. In Case 1, the highest 
difference in the average indoor temperature for summer and winter was 
more than 2 ◦C, whereas the differences for Cases 2 and 3 (PMV-based 
control methods) were 0.5 ◦C and 1.0 ◦C, respectively. In both seasons, 
Case 3 was the only control method to gradually lower the indoor 
temperature as Icl increased. 

In terms of the PMV (right side of Fig. 11), Cases 1 and 2 showed a 
significant seasonal difference in PMV and mostly created unpleasant 
environments with PMV -0.5 or below in winter. Only Case 3 could 
create an environment that was comfortable in all clothing scenarios in 
both seasons. Especially in winter, the PMV in Case 3 was improved by 
up to 1.8 at the lowest Icl (0.38 clo) compared with that of Case 1. 

The TSV for both seasons were surveyed in 2-min intervals, and 3313 
and 5733 votes were collected in summer and winter, respectively. To 
facilitate comparison of the TSV data, Fig. 12 shows the TSV distribution 
for 31 participants (winter: 22, summer: 9) with TSVr values of zero. 
Note that the figure shows the overall TSV distributions across seasons 
and ensemble. 

A condition of TSV 0, i.e., a thermally neutral state, was considered 
the comfort state in this analysis. The comfort rate (when TSV = 0) 
exhibited the following order in both seasons: Case 3 > Case 2 > Case 1. 
Additionally, the difference in the comfort rate across the control cases 
was greater in winter than that in summer. In summer, the comfort rate 
for Case 3 was 81.7%, approximately 14% higher than that of Case 1 
(67.4%) and comparable to that of Case 2 (80.8%). In winter, the 
comfort rate in Case 3 was 76.3%, which was 28.4% and 9.4% higher 
than in Case 1 (47.9%) and Case 2 (66.9%). In other words, PMV-based 
control based on the R-CLO provided the optimal comfort environment 
for occupants in both seasons, and the occupant comfort was signifi
cantly enhanced in winter. 

Fig. 11. Comparison of seasonal indoor temperature and PMV.  
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For a more extensive analysis, the lower graph in Fig. 12 shows the 
distribution of TSV by season according to the clothing ensemble. The 
TSV distribution of Case 3 was comparable to that of Case 2 in all Icl 
scenarios, with the highest comfort rate in summer being 87.8% (for 
0.38 clo) and 76.1% (for 0.50 clo). However, compared with Case 1, the 
TSV of Case 3 was significantly enhanced with all Icl conditions, and it 
improved the comfort rate by up to 31%. 

In winter, for all Icl except 0.74 clo, Case 3 achieved the highest 
comfort rate. In contrast, the comfort in Cases 1 and 2 was significantly 
decreased when the Icl was low (0.38 clo and 0.50 clo). For the lowest Icl 
(0.38 clo), the comfort in Case 3 was 50.7% and 21.4% higher than those 
in Cases 1 and 2, respectively. In other words, in winter, the traditional 
methods (Cases 1 and 2), which are typically used for controlling 
buildings, may be disadvantageous in terms of thermal comfort in most 
clothing conditions compared to Case 3. Therefore, the proposed 
method can best maintain a comfortable environment in most Icl con
ditions regardless of the season. 

5.2. Power consumption 

The power consumption in each season is shown in Fig. 13. The 

average power consumption for the experiment (30 min per participant) 
according to Icl is shown as a stacked bar chart for different seasons. The 
total power consumption is specified in each block, and the data for 
Cases 1 and 2 also include the change rate in comparison with Case 3. 

The ratio of power consumption in Case 3 varied with Icl. When Icl 
increased, for maintaining the indoor temperature at a low value, the 
power consumption increased in summer and decreased in winter. In 
contrast, the other two control methods exhibited a relatively constant 
distribution of power consumption regardless of changes in Icl. 

In summer, the power consumption in Case 3 was 2.9–49.4% lower 
than that in Case 1, except at the highest Icl (1.04 clo). Compared with 
Case 2 that had a fixed Icl value of 0.50 clo in summer, the power con
sumption in Case 3 was 2.8–18.1% lower when the Icl was below 0.5 clo. 
In winter, Case 3 consumed the highest power for all clothing types 
except at 1.04 clo, and more than twice the power was consumed 
compared to those in the other cases at the lowest Icl (0.38 clo). 

Overall, depending on the clothing, the power consumption of Case 3 
in summer varied from − 33.1% to +38% compared with those of the 
existing control methods. Especially in winter, the difference in the 
power consumption based on clothing was significant. A comparison of 
Case 3 to the other cases showed that power consumption might vary 

Fig. 12. TSV distributions by seasons and ensembles.  
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from − 5% to 2.3 times. Depending on the type of clothing donned by the 
occupants, the energy consumption may be higher or lower than those of 
the existing control methods. As demonstrated in Fig. 12, Case 3 serves 
to provide a comfortable environment to the occupants in accordance 
with Icl. In contrast, the existing control strategies appear to prioritize 
energy over comfort, particularly during the winter. In other words, 
traditional control methods may consume less power during system 
operation; however, they may induce an uncomfortable environment for 
the occupants. 

The ratio of power consumption in Case 3 was converted to 0.1 clo 
units to quantify the variation in the power consumption. The power 
consumption in summer and winter could be reduced on average by 16% 
and 13.7%, respectively, when the insulation changed by every 0.1 clo. 
To explain in detail, a decrease of 0.1 clo in summer the power saved 
about 16% and an increase of 0.1 clo in winter the power saved about 
13.7%. In conclusion, depending on Icl, the proposed control method 
may be profitable or disadvantageous in terms of the power consump
tion. For example, if occupants wear only 0.38 clo in summer, the 
comfort can be improved, and power consumption can be reduced. If 
0.38 clo clothes are worn in winter, a comfortable thermal environment 
can be obtained, but the power consumption may be two times that of 
the existing method. In other words, even when the proposed control 
method can consume more power than the existing control methods in 
some case, it ensures a comfortable environment for occupants. 

Therefore, a reasonable tradeoff between the power consumption 
and thermal comfort must be ensured based on the clothing information. 
For example, the operation of auxiliary systems can be considered by 
adjusting other parameters that determine the PMV in addition to the 
room temperature through a personal comfort system (PCS) [48] such as 
cooling/heating radiant panels or floor based ventilation systems [49] 
with adjustable air velocity. 

6. Conclusions 

This paper proposes a control algorithm embedding the R-CLO model 
that can detect occupants and estimate the real-time Icl through RGB 
images, as a new OCC strategy for improving the occupant comfort. The 
effect of R-CLO information on the comfort and power consumption was 
analyzed by conducting a control experiment by applying the proposed 
algorithm. The following conclusions were derived.  

1) The proposed model first recognizes humans and then uses the R- 
CLO model that can classify more than 34 clothing ensembles based 
on 16 garments to estimate the real-time clothing insulation. The R- 
CLO model exhibited a classification accuracy of more than 80% for 
7 out 11 garments and outperformed the original model. The pro
posed control algorithm could estimate the representative Icl value of 
the control period with an average error of 0.04 clo, thereby accu
rately reflecting the actual value.  

2) According to the results of the winter experiment, the proposed 
method based on the R-CLO yielded PMV values that satisfied the 
comfort range in all clothing conditions. The survey results of oc
cupants’ TSV indicated that system control induced a comfortable 
environment, outperforming the existing methods by 9.4–28.4%. 
Moreover, the power consumption of the proposed method was 
9.5–27.0% lower than that of the existing control method for clothes 
with insulation values of 1.0 clo or higher.  

3) According to the seasonal assessment, the proposed control method 
improved thermal comfort in both winter and summer. The TSV 
comfort rate increased by 14.3% and 28.4% in the summer and 
winter, respectively. In addition, the change in clothing insulation 
resulted in a noticeable variation in the power consumption. The 
average power consumption from the experiments in summer and 
winter were reduced on average by 16% and 13.7%, respectively, 
when the insulation changed by every 0.1 clo. 

Overall, the proposed method can maintain thermal comfort for all 
types of occupant clothing, although the power consumption may vary. 
To simultaneously ensure thermal comfort and reduce the power con
sumption, it may be necessary to use an innovative energy-saving 
strategy such as relaxing the PMV setpoint within the comfort range 
and using auxiliary systems or PCSs to adjust other PMV parameters. To 
this end, experiments must be performed for a variety of systems and 
building sizes, and the effectiveness of the strategies must be analyzed. 

To improve the overall garment classification accuracy and expand 
its applicability, the R-CLO model must be continuously trained over 
data pertaining to various clothing, indoor environments, camera an
gles, and resolutions. The current model cannot effectively identify the 
specifics of the inner garments because it relies solely on image data. 
Therefore, to increase the model’s applicability, the total clothing 
insulation must be corrected assuming the occupant’s clothing layer 
while considering relevant information such as the temperature differ
ence between the skin and clothing, detected clothing, and seasonal 
information. Additionally, the objectivity and accuracy of thermal 
comfort estimation can be enhanced by combining the R-CLO model 
with a model that identifies the occupants’ discomfort through human 
gestures or poses. 

In this context, future studies can focus on the following aspects: The 
optimal Icl for representing multiple occupants must be determined 
using the proposed control approach for comfort control in multi-use 
facilities. Additionally, occupant metabolic rate must be considered 
along with the clothing insulation to achieve accurate and practical 
PMV-based comfort control. To this end, an approach for estimating the 
real-time metabolic rate with an image-based object recognition model 
can be applied. The human pose estimation model can estimate the 
posture based on the joint coordinates of the person detected in the 
image and use it to infer the metabolic rate [19,50]. To accurately 
measure the thermal comfort, further experiments must be conducted by 
considering the real-time data of the two personal factors. 
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Appendix AParticipants and garments used in the experiment 

This appendix presents the information of the participants and clothes worn in the experiment. Table A1 summarizes the details of the twenty-three 
participants, i.e., the gender, height, weight, age, BMI, number of surveys, period of participation, and TSVr information. The lack of TSVs indicates a 
technical issue encountered in the experiment (e.g., internet connectivity). Male and female participants voted 347–380 and 412–450 times, 
respectively. ISO 9920 [36] was used as the basis for setting the garments used in this study. Table A2 presents the selected garment types and fabric 
conditions. To the greatest extent possible, the clothing used in the experiment was prepared to comply with the settings presented in Table A2 to 
satisfy the insulation value specified by ISO 9920.  

Table A1 
Participant information  

ID Sex Height (m) Weight (kg) Age BMI (kg/m2) TSVr Number of surveys Participation period 

1 Male 177 71 25 22.7 0 358 1/17, 1/20 
2 Male 170 60 24 20.8 0 365 1/17, 1/18 
3 Male 171 73 24 25.0 0 363 1/18, 1/19 
4 Male 183 70 22 20.9 0 364 1/19, 1/20 
5 Female 153 42 24 17.9 0 429 1/21, 1/28 
6 Female 164 50 26 18.6 0 413 1/21, 1/28 
7 Female 160 51 23 19.9 0 421 1/24, 1/27 
8 Male 183 75 30 22.4 0 380 1/24, 1/27 
9 Female 157 52 27 21.2 0 429 1/25, 1/26 
10 Female 167 62 22 22.2 0 412 1/25, 1/26 
11 Male 169 55 24 19.3 0 368 1/29, 2/5 
12 Female 162 50 24 19.1 0 419 2/5, 2/13 
13 Male 171 70 29 23.9 0 365 2/7, 2/20 
14 Female 158 46 24 18.4 0 446 2/8, 2/10, 2/24 
15 Male 168 65 29 23.0 0 360 2/8, 2/10, 2/11 
16 Male 168 56 26 19.8 0 357 2/9, 2/11 
17 Female 157 51 22 20.7 0 425 2/12, 2/13 
18 Female 168 53 20 18.8 0 450 2/15, 2/17 
19 Female 163 57 22 21.5 0 422 2/15, 2/17 
20 Male 174 58 21 19.2 0 368 2/16, 2/18 
21 Male 178 63 23 19.9 0 347 2/21, 2/23 
22 Male 175 72 23 23.5 − 1 372 2/23, 2/24 
23 Female 157 50 29 20.3 0 421 3/5, 3/19   

Table A2 
Garments used in the experiment (with reference to ISO 9920 [36])  

Category No Garment type Garment 
insulation (Iclu) 

Fabric in ISO 9920 Fabric used in the experiment 

Top 56 short-sleeve shirt 0.24 twill weave | cotton | 0.7 mm 100% cotton 
54 long-sleeve shirt 0.33 twill weave | cotton | 0.7 mm 100% cotton 
31 t-shirt 0.10 cotton | 1.5 mm 100% cotton 
142 long-sleeve 

sweater 
0.36 jersey/weft knit | 85% wool, 15% 

nylon | 3.55 mm 
(male) 78% wool, 22% nylon 
(female) 45% wool, 30% nylon, 15% polyester, 5% mix 

37 long-sleeve 
sweatshirt 

0.16 cotton, wool 100% cotton 

Bottom 109 trousers 
(straight, loose) 

0.22 cotton | 1.0 mm 100% cotton 

304 knee-length skirt 0.14 denim/twill weave | 100% cotton | 
0.8 mm 

100% cotton 

300 ankle-length 
skirt 

0.23 denim/twill weave | 100% cotton | 
0.8 mm 

100% cotton 

97 walking shorts 0.08 denim/twill weave | 100% cotton | 
0.8 mm 

(male) 97% cotton, 3% span 
(female) 60% cotton, 40% linen 

(continued on next page) 
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Table A2 (continued ) 

Category No Garment type Garment 
insulation (Iclu) 

Fabric in ISO 9920 Fabric used in the experiment 

291 sweatpants 0.28 fleece-backed double knit | 50% 
polyester, 38% cotton, 12% viscose 

(male) 52% cotton, 48% polyester 
(female) 100% cotton 

Outer 156 suit jacket 0.36 denim/twill weave | 100% cotton | 
0.8 mm 

(male) 56% cotton, 44% polyester (outside)/100% polyester (inside) female) 
63% polyester, 34% rayon, 3% span (outside)/60% polyester, 40% cotton 
(inside) 

Dress 333 short-sleeve shirt 
dress 

0.29 broadcloth/plain weave | 65% 
polyester, 35% cotton | 0.38 mm 

35% cotton, 65% polyester 

332 long-sleeve shirt 
dress 

0.35 broadcloth/plain weave | 65% 
polyester, 35% cotton | 0.38 mm 

50% cotton, 50% polyester 

Pajama 359 long-sleeve 
pajama top 

0.31 broadcloth/plain weave | 65% 
polyester, 35% cotton | 0.38 mm 

50% cotton, 50% polyester 

362 pajama trousers 0.17 broadcloth/plain weave | 65% 
polyester, 35% cotton | 0.38 mm 

50% cotton, 50% polyester 

361 short-sleeve 
pajama top 

0.25 broadcloth/plain weave | 65% 
polyester, 35% cotton | 0.38 mm 

50% cotton, 50% rayon  
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