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This study developed and evaluated an optimal ventilation strategy for variable air volume (VAV) systems, targeting carbon
dioxide (CO2) and particulate matter less than 2.5 μm in diameter (PM2.5) concentrations. The strategy integrates system-level
demand-controlled ventilation (DCV) based on real-time occupancy data and zone-level predictive control using indoor air
quality (IAQ) prediction models. By predicting indoor CO2 and PM2.5 levels for the subsequent time step and dynamically
adjusting control priorities, optimal airflow is determined. A co-simulation model integrating EnergyPlus, CONTAM, and
Python was employed for model training and testing. The proposed strategy was compared with on–off control, CO2 predictive
control, and PM2.5 predictive control, demonstrating superior prediction accuracy and stable IAQ maintenance. The optimal
ventilation strategy achieved the highest performance, maintaining CO2 and PM2.5 levels below their respective upper limits of
100% and 97.33% of the time. Although this strategy resulted in slightly higher energy consumption compared to the other
control algorithms due to its multivariable control approach, it effectively maintained IAQ standards. This method simplifies
development and maintenance by circumventing the need for complex optimization, providing a flexible and cost-effective
solution for IAQ management. Future research will focus on developing integrated VAV system control strategies that ensure
comfort year-round, addressing both energy efficiency and thermal comfort.
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1. Introduction

The significance of indoor air quality (IAQ) has been
increasingly emphasized since individuals spend an average
of 90% of their time indoors [1]. Effective ventilation is cru-
cial for maintaining IAQ, which directly impacts the health
and productivity of occupants. Fresh outdoor air can be
introduced through either natural or mechanical ventilation.
While natural ventilation can be easily achieved by opening
windows in residential settings, mechanical ventilation is
predominantly used in commercial buildings, office facilities,
and hospitals where central HVAC systems are installed.

Mechanical ventilation systems commonly regulate out-
door air intake based on indicators such as carbon dioxide

(CO2) concentration or outdoor air temperature. However,
IAQ cannot be adequately assessed using a single pollutant.
The World Health Organization (WHO) defines key pollut-
ants for air quality assessment, including particulate matter
(particulate matter less than 10μm in diameter (PM10) and
particulate matter less than 2.5μm in diameter (PM2.5)),
ozone, nitrogen dioxide, sulfur dioxide, and carbon monox-
ide [2]. Among these, PM2.5, with aerodynamic diameters
less than 2.5μm, is particularly detrimental to human health
[3, 4]. PM2.5 originates from both outdoor sources, such as
traffic and construction, and indoor sources, such as occu-
pant activities. While filters can be installed in ventilation
systems to prevent the ingress of outdoor PM2.5, high-
efficiency particulate air (HEPA) filters are rarely used in
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central HVAC systems due to their resistance to airflow,
which can increase energy consumption. Consequently, por-
table air purifiers are increasingly utilized to reduce indoor
PM2.5 levels.

In workplaces, where individuals spend a significant por-
tion of their time, ventilation and temperature control are
managed through variable air volume (VAV) systems. Dur-
ing heating or cooling periods, VAV terminal units adjust
the supply airflow rate based on the indoor air temperature
or to ensure the minimum airflow rate [5–7]. Conversely,
during nonconditioning periods when temperature control
is not required, VAV systems are either not operated or
operated intermittently based on monitored indoor CO2
levels. However, relying on a single variable for ventilation
can negatively impact IAQ. For instance, indoor CO2 con-
centration is primarily dependent on the rate of outdoor
air intake. In contrast, introducing outdoor air when out-
door PM2.5 levels are higher than indoor levels can exacer-
bate indoor PM2.5 concentrations. Therefore, in situations
where temperature control is not necessary, a ventilation
strategy that comprehensively considers both CO2 and
PM2.5 is essential to maintain healthy IAQ for occupants.

To achieve simultaneous control of CO2 and PM2.5 in
VAV systems, solutions that manage multiple environmen-
tal variables using limited resources, such as outdoor air
intake rates and indoor supply airflow adjustments, are
required. These solutions are predominantly investigated
under the concept of optimal control, with prominent
methods including model predictive control (MPC) and
artificial intelligence (AI)–based control. MPC derives opti-
mal control scenarios by predicting the system’s dynamic
behavior and environmental conditions based on system
manipulations. This prediction-based control method helps
maintain indoor environmental comfort by minimizing the
duration that target environmental variables exceed accept-
able levels [8–10]. Multiobjective optimization algorithms
can define objective functions for various control variables
and simultaneously optimize these functions to identify the
best control parameters. For example, Anand et al. [11] inte-
grated MPC with rule-based control to optimize the air han-
dling unit (AHU) model and zone temperature through
mathematical modeling and real-time occupancy data,
achieving minimal outdoor air intake while controlling the
supply air of the VAV terminal. Ganesh et al. [12] developed
a physics-based building model to control dedicated ventila-
tion systems using MPC, considering the dynamics of ozone,
formaldehyde, particulate matter, and energy. This approach
optimized IAQ while minimizing energy consumption
through iterative optimization at each timestep. Li et al.
[13] focused on minimizing system energy use and disease
transmission risk, using Pareto optimization to derive a set
of optimal solutions, further refined by membership func-
tions to extract the best solution.

Over recent decades, AI has gained significant traction in
building indoor environment control, particularly as an
alternative to address the limitations of MPC. Traditionally,
MPC utilized mathematical models to predict and regulate
indoor environments, whereas AI-based optimal control
leverages data-driven models, offering a streamlined approach

to model creation based on measured data without the need
to mathematically define complex input–output relation-
ships. By tailoring machine learning algorithms to the spe-
cific characteristics of the data, data-driven models can
significantly enhance prediction performance. Furthermore,
AI-based models can adapt to new environments through
training of real-time data or historical data on daily, weekly,
or monthly bases. Adapting to new environments, whether
through supervised or unsupervised methods, requires sub-
stantial data for accuracy [14]. However, this challenge has
been increasingly addressed through research demonstrat-
ing the feasibility of real-time model learning [15–17].

Leveraging these advancements, studies on AI-based
multiobjective control have been actively pursued. For
instance, Hou et al. [18] developed predicted mean vote
(PMV) and CO2 prediction models using an extreme learn-
ing machine (ELM) optimized with the grey wolf optimizer
(GWO) algorithm. Their models predicted PMV and CO2
under various system control scenarios and calculated
energy consumption to identify the control variables with
the highest performance score based on a scoring function.
Similarly, Cho et al. [13] employed neural network-based
models to predict PMV, CO2, PM10, and PM2.5. They
defined objective functions for each predicted value, merged
them into a single objective function using a weighted sum
approach, and determined optimal temperature setpoints
and ventilation airflow rates. Kim et al. [19] utilized artificial
neural networks (ANNs) to create prediction models for
indoor load, CO2 concentration, and energy consumption,
using these predictions to optimize airflow rate and supply
air temperature under minimal energy conditions.

As noted in previous studies, technologies that can be
utilized to simultaneously control CO2 and PM2.5 levels are
being researched continuously. However, comprehensive
consideration of IAQ across various factors is not present
in many studies, and robustness across different environ-
ments is also often overlooked. From the perspective of
building applicability, higher performance may be achieved
by control algorithms developed specifically for certain
buildings or systems; however, disadvantages in terms of
applicability, maintenance, and cost-effectiveness may arise.
For example, expert involvement is necessitated by MPC to
define system models and objective functions. Additionally,
numerous parameters are required to improve the accuracy
of the system model, making calibration essential [20]. As
a result of these factors, the general applicability of MPC
across different systems is limited by its nature [21].

Many AI-based optimal control methods do not func-
tion autonomously. In most instances, a machine learning
model serves as a predictor for buildings or systems, while
optimization functions determine the control values. Yadav
et al. [22] developed a recurrent neural network model to
predict hour-ahead cooling loads, employing a weighted
sum–based optimization function to minimize operational
costs. Similarly, Reynolds [23] created an ANN-based
model that predicts indoor air temperature and building
energy consumption, utilizing a genetic algorithm (GA)
to optimize energy consumption while maintaining ther-
mal comfort. Afram et al. [24] developed multiple ANN

2 Indoor Air

 ina, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/ina/6652442 by C

hung-A
ng U

niversity, W
iley O

nline L
ibrary on [06/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



models representing subsystems of HVAC systems, which
were integrated into a MPC framework. An optimization
function was employed to minimize the costs associated
with the HVAC system. In defining the optimization func-
tions, cost functions that combine various target values
into a single expression are necessary. However, these cost
functions are dependent on the applied system, which can
diminish the applicability of control algorithms. Therefore,
to enhance applicability and robustness across variable
environments, the development of flexible ventilation con-
trol strategies is essential which can effectively substitute
the functionality of optimization functions without relying
on them.

To address these challenges, this study proposes an opti-
mal ventilation strategy that integrates CO2 and PM2.5 con-
trol with minimal dependence on complex optimization
functions. The strategy employs system-level control to
respond to real-time ventilation demands based on occu-
pancy data and zone-level control to optimize air quality,
using deep neural network (DNN)–based prediction models
for both CO2 and PM2.5 levels. Control priorities are dynam-
ically adjusted based on error rates between predicted values
and set upper limits, ensuring a healthy IAQ. The strategy’s
effectiveness is evaluated by comparing it with single-
variable control methods, focusing on IAQ comfort levels,
energy consumption, and filter performance under various
conditions. The key contributions of this paper include the
following:

• An optimal indoor air pollutant control method appli-
cable during unconditioned periods, emphasizing IAQ

• A multivariable control strategy that operates robustly
across various environments without heavy reliance on
optimization functions, distinguishing it from conven-
tional optimization-based controls

• A novel co-simulation approach linking EnergyPlus,
CONTAM, and Python to demonstrate intelligent
IAQ control feasibility, overcoming previous limita-
tions in this area

The results of this study provide not only a contaminant-
focused control method for VAV systems but also introduce
promising avenues for future researchers aiming to develop
more efficient IAQ control strategies. Furthermore, these
findings suggest practical applications for energy-efficient,
adaptive ventilation in modern buildings, with potential to
improve occupant health and reduce operational costs.

2. Methodology

2.1. Research Overview. The research process, as depicted in
Figure 1, comprises four distinct stages. The first stage
involves building modeling. A comprehensive analysis of
the thermal environment, IAQ, and energy consumption
was conducted using a co-simulation technique that inte-
grates EnergyPlus, CONTAM, and Python. The developed
building model served as a basis for data acquisition and
performance evaluation. In the second stage, prediction

models for indoor CO2 and PM2.5 were developed. Input
data were selected based on the mass balance equation,
and a DNN model was constructed. The final prediction
models were determined through a training process that
included hyperparameter optimization. The third stage
focused on the development of the optimal ventilation strat-
egy. The established prediction models were integrated, and
an algorithm for determining the control priority between
the two environmental variables was configured to iterate
at each time step. The final stage entailed performance eval-
uation. To validate the performance of the optimal ventila-
tion strategy, CO2-based on–off control and single-variable
control methods based on DNN, specifically CO2 predictive
control and PM2.5 predictive control, were defined. Simula-
tions were conducted for each scenario to analyze the pre-
diction accuracy of the prediction models, the IAQ
comfort level under different control strategies, the energy
usage, and the control performance under varying filter
conditions.

2.2. Building Model. Research on indoor air pollutants
requires meticulous attention to safety during experiments
due to the potential health risks to occupants. Consequently,
many studies utilize computer simulations to conduct
related research [25–27]. To model indoor air pollutants
and their dynamics, information such as infiltration, genera-
tion rate, resuspension rate, removal rate, and deposition
rate is required. However, obtaining these data through field
measurements is often challenging or impossible, leading
many studies to use assumed values in mathematical models
or rely on statistical models. Therefore, this study employed
the small office prototype building model provided by the
US Department of Energy (DOE). This model represents
approximately 70% of the floor areas of commercial build-
ings in the United States [28] and is used for building indoor
environments and energy simulations in various studies as
well as revisions of ASHRAE (American Society of Heating,
Refrigerating, and Air-Conditioning Engineers) Standards
[29–31]. The prototype building model is provided for both
EnergyPlus and CONTAM, ensuring consistency in bound-
ary conditions between different simulation tools, which
enhances stability. Detailed information about the building
can be found in Reference [32]. The building consists of
south, north, east, west, and core zones and is a single-
story structure. The HVAC system is set to a default con-
stant air volume (CAV) system, with approximately 30
occupants.

For effective performance evaluation of the optimal ven-
tilation strategy, few information in the existing building
model was modified. First, the HVAC system was changed
to a VAV system because the fixed indoor supply airflow
rate in the CAV system does not allow for the optimal air-
flow calculation resulting from the control strategy. The
AHU serves the entire building, while each zone has one
VAV terminal, totaling five. Second, the occupancy schedule
was adjusted for each zone on weekdays to introduce envi-
ronmental variation, as occupants are sources of CO2 and
PM2.5. A uniform occupancy schedule across zones would
not provide diverse control results. Lastly, the PM2.5
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filtration efficiency was set to 80%. While HEPA filters can
capture over 99% of PM2.5, this level of filtration would elim-
inate nearly all PM2.5 impacts from outdoor air intake and
cause a decrease in supply airflow rate due to increased static
pressure.

Since this model does not simulate an actual building,
validation through calibration was challenging to apply.
Therefore, to ensure the validity of input specification
changes, the building energy consumption was compared
against the original model to confirm that no abnormal dis-
crepancies were found. For evaluation, the coefficient of var-
iance of the root mean squared error (CVRMSE) metric
suggested by ASHRAE Guideline 14 was used [33]. It was
observed that the CVRMSE for monthly and hourly energy
consumption was 8% and 15%, respectively, meeting the
allowable limits of 15% and 30%. These results indicate that
HVAC adjustments and change of input specifications were
conducted within a normal range.

2.3. Co-simulation Framework. To evaluate the performance
of machine learning–based ventilation control, a building
simulation tool capable of real-time calculations for thermal
environment, air quality, energy, and control algorithms is
necessary. However, a tool that provides all these functions
simultaneously does not yet exist [34]. Therefore, this study

constructed a co-simulation architecture using EnergyPlus,
CONTAM, and Python. EnergyPlus provides the building
envelope, HVAC system, and energy model. CONTAM
models indoor air pollutants and calculates concentrations
by considering temperature, differential pressure, infiltra-
tion, and ventilation. Python enables the application of
machine learning–based prediction models and customized
control algorithms. Since Version 9.3, EnergyPlus has
offered a Python API, allowing Python to replace energy
management system (EMS). This enables the use of libraries
for data processing or machine learning, facilitating the
implementation of prediction models and the optimal venti-
lation strategy.

The interconnection of each tool is shown in Figure 2,
where data generated from the simulation results are
exchanged at each timestep. EnergyPlus and CONTAM
communicate via the functional mock-up interface (FMI)
standard. Weather data, indoor thermal environments,
occupancy, and HVAC system operation data are transmit-
ted from EnergyPlus to CONTAM. Based on this informa-
tion, CONTAM calculates infiltration, indoor CO2, and
PM2.5 concentrations and sends these values back to Energy-
Plus. These values are transmitted to EMS and output vari-
ables, which Python can then retrieve. The optimal
ventilation strategy is designed to predict indoor CO2 and
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Figure 1: Schematic of the research process.
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PM2.5 concentrations and determine the optimal operation
of the ventilation system based on the current state at each
timestep. To achieve this, Python retrieves weather, indoor
thermal environments, indoor CO2 and PM2.5, occupancy,
and HVAC system operation data from EnergyPlus and
sends back the predicted CO2 and PM2.5 values along with
the optimal AHU and VAV terminal damper positions.
EnergyPlus then uses these values to control the ventilation
system and calculate energy consumption.

In this co-simulation process, data delay between the
tools is inevitable. For instance, even if the AHU outdoor
air damper position is derived from Python, it is not imme-
diately reflected in the system within EnergyPlus and subse-
quently communicated to CONTAM within a single
timestep. This delay can affect the immediacy of indoor
environment control, but this can be mitigated by minimiz-
ing the simulation timestep [35]. EnergyPlus allows a mini-
mum timestep of 1min. Therefore, the simulation was
conducted with this timestep, and it was observed that envi-
ronmental changes due to damper positions input from
Python were reflected after four timesteps. Consequently,
ventilation system control and data interpretation were con-
ducted at 5-min intervals.

2.4. IAQ Prediction Models. In this study, IAQ prediction
models refer to the indoor CO2 prediction model and the
indoor PM2.5 prediction model. Each model predicts the
one-step-ahead concentration of CO2 and PM2.5, serving as

critical components of the optimal ventilation strategy. As
data-driven models, these IAQ prediction models are devel-
oped using field-acquired data and follow a supervised learn-
ing approach. Common machine learning algorithms used
for indoor environmental prediction include support vector
machines, k-nearest neighbors, decision trees, random for-
ests, and neural networks. Among these, neural networks
are particularly advantageous for learning nonlinear rela-
tionships between input and output data and have relatively
low computational costs [36]. Additionally, neural networks
are not overly complex to develop and can be incrementally
trained, making them widely used for indoor environment
prediction, building energy consumption forecasting, MPC,
and intelligent control applications [37–39].

Neural networks are further categorized based on the
connection methods of nodes and learning techniques.
Among these, DNNs feature multiple hidden layers, provid-
ing superior performance with fewer nodes compared to
single-layer neural networks [40]. The target variables for
control in this study, indoor CO2 and PM2.5, are influenced
by multiple factors such as infiltration, outdoor concentra-
tion, indoor sources, and removal rates, exhibiting nonlinear
relationships that do not remain constant even under the
same conditions. Moreover, most of these independent var-
iables are challenging to measure in real time using sensors.
Considering the characteristics of CO2 and PM2.5, DNNs
were employed to develop the IAQ prediction models. The
training process is summarized in Figure 3.

Building envelope (thermal environment)
HVAC system
Energy model
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CO2 concentration
PM2.5 concentration

EnergyPlus → CONATM CONTAM → EnergyPlus
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up unit (FMU)
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Figure 2: Scheme of co-simulation framework.
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First, the input variables corresponding to the indepen-
dent variables were selected. Generally, black box modeling
involves correlation analysis between multiple independent
and output variables. However, in this study, input variables
were selected based on a deterministic function grounded in
mass balance to ensure the generality of the prediction
models. According to Equation (1), the concentration of
indoor air pollutants is derived from the sum of inflow, gen-
eration, outflow, and reduction rates.

V∙dCi/dt =mQC0 + S −mQCi − R 1

where V is the volume of the space (m3), Ci is the concentra-
tion of indoor air pollutants (μg/m3), m is the mixing factor,
Q is the supply airflow rate (m3/h), C0 is the concentration
of outdoor air pollutants (μg/m3), S is the generation rate
of indoor air pollutants (μg/h), and R is the removal rate
of indoor air pollutants (μg/h).

Among the variables in this equation, data directly
obtainable via sensors include the concentration of outdoor
and indoor air pollutants and the VAV terminal opening
rate representing the supply airflow rate. Additionally, the
AHU damper opening rate was included as it influences
the concentration of mixed indoor pollutants. For the gener-
ation rate, occupant count data were used indirectly, as
occupants are the primary sources of CO2 and PM2.5
through respiration and activity. The removal rate, compris-
ing disposal rate and mass, was excluded from the input data
due to the lack of real-time sensor data acquisition. The
selected input data was subjected to a data normalization
process using the min–max scaler from the scikit-learn
library, scaling each data point between 0 and 1. This process
prevents overfitting and increased dependency on specific
independent variables due to differing data scales, thereby
improving learning efficiency. The normalized data were

then divided into training (60%), validation (20%), and test
data (20%) sets for the training process.

The performance of prediction models is influenced by
the number of hidden layers, the number of neurons in each
layer, and variables such as the optimization function,
epochs, batch size, and learning rate. These variables are
defined as hyperparameters, and the optimal combination
must be identified to achieve the best performance of the
prediction models. This study applied Bayesian optimization
(BO) to iteratively determine the optimal hyperparameters
through repeated training. BO selects the optimal hyper-
parameters through the interaction between a surrogate
model and an acquisition function [41]. The surrogate
model probabilistically estimates the unknown shape of the
objective function based on the combination of forecasting
model results and hyperparameters. The acquisition func-
tion recommends hyperparameter combinations, iteratively
seeking the combination that maximizes the performance
of the objective function. The number of search iterations
was set to 20. After each search, the combination of hyper-
parameters and the validation result defined by mean
squared error (MSE) were recorded. Upon completing the
predetermined number of searches, the model with the low-
est MSE among the 20 candidates was selected as the final
model. The structure of the IAQ prediction models is
depicted in Figure 4.

2.5. Optimal Ventilation Strategy. The optimal ventilation
strategy is divided into system-level and zone-level control.
This distributed control approach reduces computational
load by allowing calculations for multiple cases within a sin-
gle time step [42]. Additionally, when a single AHU serves
multiple zones, using multiobjective optimization to set the
central system’s outdoor air intake can conserve energy in
the thermal system but may risk insufficient outdoor air

Start

Decide input data
V · dCi/dt = mQC0 + S – mQCi – R

Data normalization
Min-max scaler

Generate training dataset
Train (60%), validation (20%), test (20%)

Define searching ranges of
hyperparameters

Number of neurons, number of layers,
learning rate, activation functions

Model training
Bayesian optimization

Epochs finished?

Save results
Hyperparameters, performance (mean

squared error)

Select a best model
min (mean squared error)

End

Yes
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Figure 3: Training process of IAQ prediction models.
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supply to certain zones, leading to uncomfortable thermal
conditions. To address this, system-level control utilizes
demand-controlled ventilation-carbon dioxide (DCV-CO2)
based on real-time occupancy to meet the minimum
required airflow, while zone-level control optimally manages
both CO2 and PM2.5 levels. An overview of the optimal ven-
tilation strategy is shown in Figure 5, with a step-by-step
explanation provided below:

• Step 1: Acquire the current time step data required
for CO2 and PM2.5 prediction and optimal control.
The data includes outdoor CO2 concentration, out-
door PM2.5 concentration, indoor CO2 concentration,
indoor PM2.5 concentration, outdoor air damper
opening rate, VAV terminal opening rate, and the
number of occupants.

• Step 2: Input the occupancy data into the equation for
calculating the minimum outdoor air intake, as shown
in Equation (2). This equation represents the DCV-
CO2 control method presented in ASHRAE Standard
62.1 [43]. DCV-CO2 enables stable calculation of the
minimum outdoor air intake by responding in real
time to the changing number of occupants, in addition
to the required ventilation per building area. For effi-
cient utilization of this equation, real-time occupancy
data acquisition is necessary. Recent advancements in
sensor and deep learning technologies have introduced
methods such as infrared (IR) or deep vision–based
people counters [44, 45] and Wi-Fi connection–based
occupancy inference [46] which provides high count-
ing accuracy. For single-zone systems, the total number

of occupants is used, while for multizone systems, the
zone with the highest occupancy is considered.

mAHU = Rp + Pz + RAAz 2

where Vbz is the minimum outdoor airflow rate (L/s), Rp is
the required outdoor airflow rate per person (L/s/person),
Pz is the number of occupants, RA is the required outdoor
airflow rate per floor area (L/s/m2), and Az is the floor area
(m2). Rp and RA use the values of 2.5 L/s·person and 0.3 L/
s·m2 for office space as presented in ASHRAE Standard
62.1 [43]. The minimum outdoor airflow rate Vbz is then
divided by the maximum airflow rate of the AHU to calcu-
late the AHU damper opening rate as shown in Equation
(3), which is subsequently used for control.

ORAHU =mAHU/mAHU,max 3

where ORAHU is AHU the damper opening rate and
mAHU,max is the maximum airflow rate of AHU (L/s).

• Step 3: Generate input data for the IAQ prediction
models. Here, the AHU damper opening rate uses
the value calculated in Step 2, and the remaining data
are from the current time step acquired in Step 1. This
data is then input into the IAQ prediction models to
forecast CO2 and PM2.5 concentrations for the next
time step. The errors between the predicted values
and the upper limits for each control variable are

Input data for CO2 prediction Input data for PM2.5 prediction

Outdoor PM2.5 concentration
Indoor PM2.5 concentration
AHU damper opening rate
VAV terminal opening rate
The number of occupants

Outdoor CO2 concentration
Indoor CO2 concentration
AHU damper opening rate
VAV terminal opening rate
The number of occupants

IAQ prediction models

CO2 prediction model PM2.5 prediction model

Output data

Indoor PM2.5 concentration
of next time step

Indoor CO2 concentration
of next time step

Figure 4: Input and output variables of IAQ prediction models.
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calculated using Equations (4) and (5), with the larger
error selected as the control priority.

CO2,ER = CO2,pred − CO2,limit /CO2,limit 4

PM2 5,ER = PM2 5,pred − PM2 5,limit /PM2 5,limit 5

where CO2,ER is the error rate between predicted CO2 and
upper limit of CO2 (%), CO2,pred is the predicted indoor
CO2 concentration (ppm), and CO2,limit is the upper limit
value of indoor CO2 concentration (ppm). PM2 5,ER is the
error rate between predicted PM2.5 and upper limit of
PM2.5 (%), PM2 5,pred is the predicted indoor PM2.5 concen-
tration (μg/m3), and PM2 5,limit is the upper limit concentra-
tion of indoor PM2.5 (μg/m3). The CO2 and PM2.5 upper
limits are 1000 ppm and 15μg/m3, respectively.

Using the error rate for control priority helps minimize
the impact of different data scales. While data normalization
or standardization methods are typically used to compare
data with different scales, CO2 and PM2.5 do not have
defined lower and upper limits. When training data is lim-

ited to a specific period, setting appropriate lower and upper
limits can be challenging. Conversely, error rates only
require comparison and upper limit data and express errors
as percentages, making it easier to compare data. Although
this does not completely solve the data scale issue, error rates
expressed as percentages can also indicate the relative dis-
tance between the current value and the upper limit. The

System level control Zone level control

Predict CO2 and
PM2.5 concentration

for the next time
step (t+1) through

IAQ forecasting
model

Data preprocessing and generate
input data for IAQ prediction

models

Calculate the error
rates of each

controlled variable
(CO2 and PM2.5)

Compare the error
rates and determine
the control priority

of controlled
variable

Generate input data for each
VAV terminal opening rate

Predict selected
controlled variable
concentration of
next time step for

each VAV terminal
opening rates

Get data

Calculate the
minimum outdoor

air flow rate of
AHU

Calculate the AHU
damper opening

rate

Control AHU with calculated
AHU damper opening rate

Do all predicted
values exceed

setpoint value?

Predict CO2 and 
PM2.5 concentration

for the next time
step (t+1) through

IAQ forecasting
model

Extract predicted values that
satisfy

less than the setpoint

Calculate the
absolute value of
error rates and

select the minimum
value

Select the VAV
terminal opening
rate in the input

data of the
corresponding

minimum value

Control VAV terminal with
VAV terminal opening rate

Start

End

Step 1

Step 2

Step 4Step 3

Yes

No

System off

Figure 5: Outline of optimal ventilation strategy.

Table 1: Hyperparameters and search scopes.

Hyperparameters
Bayesian

optimization
Range and value

Number of hidden layers ✓ 1–5

Number of neurons of each
layer

✓ 10–30, step: 2

Learning rate ✓ 0.01, 0.001, 0.0001

Activation function ✓
Sigmoid, Tanh,

ReLu

Epochs — 100

Optimization algorithm —
Adam

optimization

Trials — 20
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optimal ventilation strategy updates control priorities based
on this principle at each time step.

• Step 4: Implement control based on the selected con-
trol priority. In this step, predictions are made for all
possible VAV terminal opening rates. Unlike the pre-
diction in Step 3, which forecasts how indoor CO2 or
PM2.5 will change if the current state is maintained,
this step is aimed at determining the minimum airflow
rate required to keep CO2 or PM2.5 below their upper
limits. Therefore, instead of using the current VAV
terminal opening rate, six different opening rates
(ranging from 0 to 1 in increments of 0.2) are used
to generate input data. Instead of using the current
VAV terminal opening rate, six different opening rates
(ranging from 0 to 1 in increments of 0.2) are used to
generate input data. For each of these six opening
rates, the IAQ prediction models forecast the indoor
CO2 or PM2.5 levels. These predicted values are then
compared to their respective upper limits. If all pre-
dicted values exceed the upper limits, the VAV termi-
nal is fully opened to ensure maximum ventilation.
However, if at least one predicted value does not
exceed the upper limit, the VAV terminal opening rate
that results in the smallest absolute error between the
predicted value and the upper limit is selected. This
approach ensures that IAQ remains within comfort-
able and safe limits by preventing CO2 and PM2.5

levels from exceeding their upper limits while optimiz-
ing the use of ventilation resources.

2.6. Evaluation Metrics. The performance evaluation of the
optimal ventilation strategy was conducted based on the pre-
diction accuracy of the IAQ prediction models and the IAQ
and energy consumption resulting from the control out-
comes. The prediction accuracy of the IAQ prediction
models was assessed by comparing the predicted values with
the actual values, and it was evaluated at two stages: during
the training phase using test data and in real time during
the application of the optimal ventilation strategy. The met-
rics used were mean absolute error (MAE), CVRMSE, and R
-squared (R2). Lower values of MAE and CVRMSE and
higher values of R2 indicate better prediction accuracy. The
calculation methods for these metrics are shown in Equa-
tions (6)–(8).

MAE =
1
n
〠
n

i=1
yi − ŷi 6

CVRMSE = 1
y

〠
n

i=1
yi − ŷi

2/n × 100 % 7

R2 = 1 − 〠
n

i=1
yi − ŷi

2/〠
n

i=1
yi − yi

2 8
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Figure 6: Scatterplot between actual and predicted values: (a) CO2 prediction model and (b) PM2.5 prediction model.

Table 2: Training results of IAQ prediction models.

Model
Optimization results Metrics

Structure Learning rate Activation function MAE CVRMSE R2

CO2 prediction model 5-8-12-1 0.001 ReLu 3.50 ppm 0.85% 0.99

PM2.5 prediction model 5-10-10-6-1 0.001 ReLu 0.12 μg/m3 1.50% 0.99
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where yi is the actual value of ith data point, ŷi is the pre-
dicted value of ith data point, and y is the average value of
actual value.

IAQ is calculated using Equations (9) and (10). IAQ-
CO2 and IAQ-PM2.5 represent the percentage of time steps
during the control period when the concentrations did not

Get data

Calculate the
minimum outdoor air
flow rate of AHU and
damper opening rate

Control AHU with calculated
AHU damper opening rate

Start

End

CO2 < 1,000 ppm?

Control VAV terminal with
opening rate of 100%

Control VAV terminal
with opening rate of 0%

Yes

No

(a)

Get data

Calculate the minimum
outdoor air flow rate of

AHU and damper
opening rate

Control AHU with calculated
AHU damper opening rate

Start

End

Predict IAQ
concentration for the

next time step (t+1) for
each VAV terminal

opening rates

Data preprocessing and generate input
data for IAQ (CO2 or PM2.5)

forecasting model

Calculate the errors
between predicted
values and setpoint

concentration
(CO2: 1,000 ppm, 

PM2.5: and 15 𝜇g/m3)

Negative value
exist in the

calculated errors?

Extract the VAV terminal opening
rate used to calculate the minimum

absolute value of the error

Calculate the absolute
value of errors

Control VAV terminal with
extracted opening rate

Control VAV terminal with
opening rate of 100%

Yes

No

(b)

Figure 7: Control methods: (a) Case 1; (b) Case 2 and Case 3.
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exceed the upper limits [47]. Energy consumption is evalu-
ated by calculating the supply fan energy usage over the
same period to compare the fan operation rates due to differ-
ences in the supply airflow rate, as shown in Equation (11).

IAQ‐CO2 = number time steps of CO2

< 1000 ppm/number of time steps of controlled period
× 100 %

9

IAQ‐PM2 5 = number time steps of PM2 5

< 15 μg/m3/number of time steps of controlled period
× 100 %

10

Total fan energy = 〠
end of controlled time step

i=start of controlled time step
Fani/60 kWh

11

where Fani is the electric energy usage at ith time step.

3. Result Analysis

3.1. Training Results of IAQ Prediction Models. Simulations
were conducted to generate training data for the control sce-
narios of the AHU and VAV systems. The control variables
included the AHU damper opening rate and the VAV termi-
nal opening rate, each incremented from 0 to 1 in steps of
0.2. To introduce variability in CO2 and PM2.5 levels beyond
the fixed schedules of arrival, lunch, and departure times, the
number of occupants during other times was adjusted arbi-
trarily. Weather data and outdoor CO2 and PM2.5 concentra-
tion data were sourced from previous studies, specifically
selecting a week with significant PM2.5 fluctuations based
on actual sensor data [48]. This simulation yielded a total
of 72,576 data points, which were then normalized and sep-
arated to form the training dataset.

The hyperparameters optimized via BO included the
number of hidden layers, the number of neurons per layer,
the learning rate, and the activation function. The detailed
search ranges for these hyperparameters are provided in
Table 1. Given the absence of predefined criteria for hyper-
parameter selection, the search ranges were arbitrarily set
to balance training efficiency. The optimization algorithm
employed was Adam optimization, with the number of
epochs set to 100 and a batch size of 32. The BO process
involved 20 iterative learning trials. The CO2 and PM2.5 pre-
diction models were trained independently.

The results of the training are summarized in Table 2
and Figure 6. For the CO2 prediction model, BO identified
an optimal architecture with 2 hidden layers containing 8
and 12 neurons, respectively. The learning rate was set at
0.001, and the ReLU (rectified linear unit) activation func-
tion was used. The training outcomes demonstrated high
prediction accuracy, with a MAE of 3.50 ppm, a CVRMSE
of 0.85%, and an R2 value of 0.99. Similarly, the PM2.5 pre-
diction model exhibited excellent performance, featuring

an architecture with 3 hidden layers containing 10, 10, and
6 neurons, respectively. The learning rate was 0.001, and
the ReLU activation function was employed. The PM2.5 pre-
diction model achieved a MAE of 0.12μg/m3, a CVRMSE of
1.50%, and an R2 value of 0.99. Figure 6 presents scatter
plots of the actual versus predicted values for both models,
with no outliers detected.

3.2. Case Studies

3.2.1. Case Definitions. In this study, three control algo-
rithms (Cases 1–3) were defined as comparison groups to
effectively demonstrate the performance of the optimal ven-
tilation strategy. Each control algorithm is illustrated in
Figure 7. Case 1 employs the conventional ventilation con-
trol logic of the VAV system, known as DCV-CO2. This
control is applied at the system level, with on–off control
based on a CO2 concentration threshold of 1000 ppm
applied to the VAV terminals. The positions of the VAV ter-
minal dampers for on and off states are 0% and 100%,
respectively. Case 2 combines system-level DCV-CO2 with
zone-level CO2 predictive control. The CO2 prediction
model is applied at the zone level, predicting CO2 concentra-
tions at each time step and calculating errors based on the
1000 ppm threshold. If all errors are positive, the VAV ter-
minal dampers are fully opened. If there are negative errors,
the dampers are controlled to the opening rate that mini-
mizes the absolute value of the error rate. Case 3 also applies
DCV-CO2 at the system level, but at the zone level, PM2.5
predictive control, incorporating the PM2.5 prediction
model, is used. The control process for PM2.5 follows the
same procedure as Case 2. The threshold for PM2.5 is set at
15μg/m3. Finally, Case 4 is the optimal ventilation strategy,
which simultaneously controls both CO2 and PM2.5. A sum-
mary of each case is provided in Table 3. Simulations for
performance evaluation of the control algorithms were con-
ducted over five weekdays that were different from the
period used for training the IAQ prediction models.

Table 3: Summary of performance evaluation cases.

Cases
Control methods

AHU VAV terminal

Case 1 DCV-CO2 On–off control

Case 2 DCV-CO2 CO2 predictive control

Case 3 DCV-CO2 PM2.5 predictive control

Case 4 DCV-CO2 Integrated control

Table 4: Prediction accuracy for control period.

Cases MAE CVRMSE R2

Case 2—CO2 9.28 ppm 1.78% 0.99

Case 3—PM2.5 0.16μg/m3 1.29% 0.97

Case 4—CO2 9.31 ppm 2.16% 0.99

Case 4—PM2.5 0.16μg/m3 1.42% 0.99

11Indoor Air
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3.2.2. Prediction Accuracy. The effectiveness of predictive
control fundamentally depends on the accuracy of the
embedded prediction models. Significant deviations in the
forecasts of future environmental variables can lead to sys-
tem malfunctions, resulting in uncomfortable indoor condi-
tions. Therefore, it is crucial to assess the accuracy of these
predictions rigorously. Table 4 presents the prediction accu-
racy metrics for each case. For Case 2, the CO2 prediction
metrics were a MAE of 9.28 ppm, a CVRMSE of 1.78%,
and an R2 of 0.99. For Case 3, the PM2.5 prediction metrics
were a MAE of 0.16μg/m3, a CVRMSE of 1.29%, and an
R2 of 0.97. In Case 4, the CO2 prediction results yielded a
MAE of 9.31 ppm, a CVRMSE of 2.16%, and an R2 of 0.99,
while the PM2.5 prediction results showed a MAE of
0.16μg/m3, a CVRMSE of 1.42%, and an R2 of 0.99. These
results indicate that the prediction models performed with
high accuracy across all cases, ensuring stable operation of
the control systems. Figure 8 illustrates scatter plots compar-
ing actual versus predicted values, confirming that no signif-
icant outliers were present in the predictions.

Although the prediction models demonstrate high accu-
racy, achieving similar accuracy in actual building applica-
tions may be challenging due to uncertainties such as
external disturbances and sensor measurement instability.
This can be observed in Figure 8, where relatively large dis-

crepancies between actual and predicted values mostly occur
during rapid fluctuations in CO2 and PM2.5 levels. The
indoor air prediction models depend on the current occupant
count as an input variable, and since CO2 and PM2.5 levels
are influenced by occupants’ respiration and activity, predic-
tion mismatches can arise without information on future
occupancy changes. Anticipating occupant schedules could
reduce the impact of uncertainty in real-world applications.

3.2.3. Computation Time. The computation time is critical
for real-time control. In the optimal ventilation strategy,
the prediction process of the indoor air models constitutes
the largest portion of the computation time. Simulations
were conducted on an Intel Core i5-10600 processor with
16GB RAM, achieving computation times of less than 1 s
per time step. This efficiency is attributed to the simple con-
figuration of the prediction models and minimal input data
requirements. With sufficient performance servers in actual
building applications, control delays due to computation
are not anticipated.

3.2.4. Comparative Analysis of IAQ. The simulation results
for the four control algorithms are presented in Figures 9
and 10 and Table 5. Graphs (a) and (c) of Figure 9 display
the indoor CO2 and PM2.5 concentrations for each case,
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Figure 8: Scatterplot of actual and predicted values within the control period: (a) Case 2—CO2; (b) Case 3—PM2.5; (c) Case 4—CO2; (d)
Case 4—PM2.5.
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Figure 9: Continued.
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respectively, while Graphs (b) and (d) offer an enlarged view
for a more detailed comparison. Figure 10 shows the indoor
CO2 and PM2.5 concentration distributions, and Table 5
provides the IAQ-CO2 and IAQ-PM2.5 metrics for each case.

Graph (a) indicates that for Cases 1, 2, and 4, where CO2
control criteria were established, the indoor CO2 concentra-
tions during the control period (6:00–20:00) were main-
tained near the upper limit of 1000ppm. The differences
among these three cases are elucidated in Graph (b). In Case
1, the indoor CO2 concentration was higher than in Cases 2
and 4 due to the VAV terminal opening only when the CO2
concentration exceeded 1000 ppm. In contrast, the indoor
CO2 concentrations in Cases 2 and 4, which utilized CO2
predictive control, remained stably below the upper limit.
The minimal difference in indoor CO2 concentrations
between Cases 2 and 4 suggests that CO2 control was pre-
dominantly prioritized during this period in Case 4.

Graph (c) illustrates that only in Case 3 did the indoor
PM2.5 concentration approximate the upper limit, while
the other cases maintained much lower concentrations than
the upper limit of 15μg/m3. This implies that CO2 had a
more significant impact than PM2.5 in the given building

model. Graph (d) reveals the distinctions among Cases 2,
3, and 4. Although Case 4 primarily controlled CO2 during
the selected period, it maintained indoor PM2.5 concentra-
tions below the upper limit from 6:00 to 9:30, unlike Case
2. This indicates that PM2.5 control was prioritized before
the indoor CO2 concentration increased due to occupant
activities. Subsequently, as CO2 control took precedence,
the indoor PM2.5 concentrations in Case 4 became similar
to those in Case 2. This pattern was observed not only in
the zoomed area but also throughout the control period.

Unlike conventional optimization functions, the optimal
ventilation strategy dynamically adjusts the target control
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Figure 9: Control results for each case: (a) indoor CO2 concentration; (b) enlarged graph of (a); (c) indoor PM2.5 concentration; and (d)
enlarged graph of (b).
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Figure 10: Indoor CO2 and PM2.5 concentration distribution.

Table 5: IAQ comfort ratio.

Cases IAQ-CO2 IAQ-PM2.5

Case 1 78.38% 89.52%

Case 2 100% 72.57%

Case 3 23.24% 95.33%

Case 4 100% 97.33%
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Figure 11: VAV operation rate and fan energy consumption: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4; (e) fan energy consumption.
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variable in real time. Due to this approach, when the vari-
ability of one control variable is greater than the other, the
VAV system may operate with a higher dependency on that
specific variable. This is illustrated in Figure 10. The distri-
bution of indoor CO2 and PM2.5 concentration in Case 4
resembles that of Cases 1 and 2, where control was primarily
based on CO2. This implies that the CO2 error rate was
higher than that of PM2.5 during the error rate calculation
stage.

One might question whether controlling based on CO2
alone would naturally keep PM2.5 concentrations within a
comfortable range. However, PM2.5 concentration is influ-
enced by filters installed in the AHU or VAV terminals. If
these filters are insufficient in removing PM2.5, its variability
may increase. The control outcomes of the optimal ventila-
tion strategy in response to this issue are discussed in further
detail in Section 4.

The IAQ-CO2, representing the percentage of time the
indoor CO2 concentration remained below the upper limit
during the control period, was highest in Cases 2
(100.00%) and 4 (100.00%), followed by Case 1 (78.38%)
and Case 3 (23.24%). This highlights the superior perfor-
mance of CO2 predictive control in Cases 2 and 4. In Case
1, 21.62% of the control period experienced uncomfortable
CO2 levels due to the on–off control mechanism, which only
opened the VAV terminal after exceeding 1000 ppm. The
low IAQ-CO2 in Case 3 indicates insufficient fresh air intake
for reducing indoor CO2 levels when focusing on PM2.5 con-
trol. The IAQ-PM2.5 was highest in Case 4 (97.33%),
followed by Case 3 (95.33%), Case 1 (89.52%), and Case 2
(72.57%). Despite the generally low indoor PM2.5 concentra-
tions in Cases 1, 2, and 3 during the control period, the
absence of PM2.5 control in the morning hours, when CO2
levels were low, significantly impacted the IAQ-PM2.5
results. Overall, Case 4 showed the highest comfort ratio
for both control variables, indicating that the optimal venti-
lation strategy successfully achieved optimal control.

Comparing these results to Reference [47], IAQ-CO2 of
81.6% and IAQ-PM2.5 of 99.7% achieved by the rule-based
integrated control, the optimal ventilation strategy demon-
strated an 18.4% improvement in CO2 performance,
although it was 2.37% lower in PM2.5 performance. How-
ever, since both studies maintained over 95% IAQ-PM2.5, it
can be concluded that both approaches provide sufficiently
comfortable IAQ. Although direct comparisons of relative
superiority are challenging due to differing environmental,
building, and system conditions between the studies, it is
evident that the optimal ventilation strategy can achieve suf-
ficiently comfortable IAQ through the optimal control of
both CO2 and PM2.5.

3.2.5. Energy Usage. The supply airflow rate is determined by
the VAV terminal opening rate, which directly impacts the
supply fan energy usage. Graphs (a)–(d) in Figure 11 show
the VAV terminal opening rates, while Graph (e) illustrates
the fan energy usage. In Case 1, the VAV terminals fully
opened when the indoor CO2 concentration exceeded the
upper limit, resulting in an energy consumption of
223.65 kWh. In Case 2, as shown in Graph (b) of Figure 9,

the indoor CO2 concentration was maintained below
1000 ppm with a significantly lower supply airflow rate com-
pared to Case 1. The energy consumption in Case 2 was
207.74 kWh, reflecting a reduction of approximately 7.11%
compared to Case 1. Case 3 operated with a relatively lower
airflow rate compared to CO2 control, resulting in the lowest
energy consumption of 205.37 kWh. Case 4 exhibited a
mixed pattern of the opening rates seen in Cases 2 and 3,
resulting in higher energy usage of 208.93 kWh compared
to the single-variable controls but achieving a 6.58% energy
reduction compared to the traditional control method in
Case 1.

4. Discussions

4.1. Energy Efficiency. While Graphs (a)–(d) in Figure 9 ini-
tially suggest significant disparities in energy usage, the
actual energy consumption did not exhibit such substantial
differences. This can be attributed to the varying fan opera-
tion rates corresponding to the VAV terminal opening rates,
as detailed in Table 6. Although Case 1 displayed the highest
opening rates, its operation rate was the lowest at 21.52%.
Conversely, Cases 2, 3, and 4, which addressed partial loads,
demonstrated lower average opening rates than Case 1 but
exhibited higher operation rates of 58.10%, 30.24%, and
64.27%, respectively. Among these, Case 3 achieved the low-
est energy consumption due to both low opening and oper-
ation rates; however, its energy consumption was only
3.56 kWh (1.75%) less than that of the optimal ventilation
strategy. These findings imply that while integrated control
of multiple variables can potentially lead to increased energy
consumption compared to single-variable control, the
increase may not be as significant as anticipated.

4.2. Filter Variation. Indoor PM2.5 concentrations are signif-
icantly influenced by the performance of filters installed in
the AHU or VAV terminals. Although HEPA filters can cap-
ture more than 99% of PM2.5, they may reduce the supply
airflow, thereby increasing system capacity requirements
and potentially compromising energy efficiency. This is par-
ticularly relevant for older HVAC systems that may not be
equipped with HEPA filters. Therefore, it is crucial to com-
pare the performance of the optimal ventilation strategy
under various filtration efficiencies.

To this end, additional simulations were conducted,
incrementally increasing the PM2.5 filtration efficiency from
0.0 to 0.8 in steps of 0.2, with the optimal ventilation strategy
applied to all cases. Figure 12 presents the simulation results,
showing indoor CO2 and PM2.5 concentrations, while
Table 7 displays the operation rates for each control variable,

Table 6: Fan operation rate with the control period.

Cases Operation rate

Case 1 21.52%

Case 2 58.10%

Case 3 30.24%

Case 4 64.27%
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Figure 12: Continued.
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along with IAQ metrics for each case during the control
period.

According to Figure 12, when the filter efficiency was
0.0, the system operated predominantly in PM2.5 mode, but
as the efficiency increased to 0.8, the proportion of CO2 mode
increased. In all cases, CO2 levels remained below 1000 ppm,
and IAQ-PM2.5 improved as the filtration rate increased. For
the filtration rate 0.0, although the VAV system was con-
trolled as PM2.5 mode in most period, the IAQ-PM2.5 was
0% due to the absence of filter. The IAQ-PM2.5 of filtration
0.2 was slightly improved compared to filtration 0.0, but the
filtration performance was insufficient. However, when the
filtration rate changed from 0.2 to 0.4, the IAQ-PM2.5 ratio
sharply increased from 9.81% to 90%, despite a high rate of
switching between CO2 and PM2.5 modes. When the filtra-
tion rate increased to 0.6 and 0.8, the IAQ-PM2.5 also
increased to 94.86% and 97.33%, respectively.

These results indicate that the integrated control effec-
tiveness of the optimal ventilation strategy is maximized
when filters of a certain performance level are applied. Addi-
tionally, as the filtration rate increases, the optimal ventila-
tion strategy shows a higher tendency to prioritize CO2
control. This demonstrates that, even with varying outdoor
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Figure 12: Indoor air pollutant concentration according to the filtration rates: (a) filtration rate 0.0; (b) filtration rate 0.2; (c) filtration rate
0.4; (d) filtration rate 0.6; (e) filtration rate 0.8.

Table 7: Operation rates and IAQ comfort levels.

Filtration
rate

Operation rate IAQ
CO2 mode PM2.5 mode IAQ-CO2 IAQ-PM2.5

0.0 0.00% 99.52% 100% 0.0%

0.2 4.48% 95.05% 100% 9.81%

0.4 38.19% 61.33% 100% 90.00%

0.6 70.95% 28.57% 100% 94.86%

0.8 75.24% 24.29% 100% 97.33%
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CO2 and PM2.5 concentrations or differing rates of indoor
pollutant generation and removal, the optimal ventilation
strategy can consistently achieve the best possible outcomes
under given conditions.

4.3. Limitations and Future Works. This study proposed an
optimal ventilation strategy for VAV systems, specifically
targeting air pollutants. This methodology is suitable for
scenarios where only ventilation is required, such as dur-
ing periods when heating and cooling are not necessary.
However, during heating and cooling periods, VAV sys-
tems must concurrently manage ventilation and thermal
regulation. In such instances, the rate of outdoor air intake
in the AHU impacts not only the concentration of air pol-
lutants but also the heat transfer efficiency of the heating
and cooling coils, thereby directly influencing the energy
consumption of chillers and boilers. Furthermore, the
VAV terminals must also address the thermal comfort of
occupants, necessitating the development of more sophisti-
cated control algorithms. Consequently, future research
will focus on developing integrated indoor environment
control algorithms that account for both heating and cool-
ing, enabling a comprehensive analysis of thermal comfort
and IAQ.

5. Conclusions

In this study, an optimal ventilation strategy that simulta-
neously considers CO2 and PM2.5 was developed and evalu-
ated. The strategy is divided into system-level and zone-level
controls. At the system level, DCV-CO2 based on real-time
occupant data was applied, while at the zone level, predictive
control based on IAQ prediction models was implemented.
This approach involved predicting indoor CO2 and PM2.5
concentrations for the next time step and dynamically
adjusting the control priority based on the error rates
between the predicted values and the upper limits to deter-
mine the optimal supply airflow.

To develop and test the optimal ventilation strategy, a
co-simulation-based base model integrating EnergyPlus,
CONTAM, and Python was constructed. Data acquired
from the base model was used to train the IAQ prediction
models, which were then embedded in the strategy. The
optimal ventilation strategy was compared with three other
control algorithms in terms of prediction accuracy, IAQ per-
formance, and energy usage. Additionally, the impact of fil-
tration performance on IAQ was assessed to evaluate the
strategy’s applicability under various conditions. The key
findings and analyses are as follows:

• Ensuring the accuracy of IAQ prediction models is
crucial for the stability of predictive control. In Cases
2, 3, and 4, where predictive control was applied, the
CVRMSE values were all below 3%, and the R2 values
exceeded 0.97, indicating high predictive accuracy.
Consequently, CO2 and PM2.5 levels remained below
the upper limits with minimal fluctuations throughout
most of the control periods.

• The IAQ evaluation for Case 4, where the optimal ven-
tilation strategy was applied, showed IAQ-CO2 at
100% and IAQ-PM2.5 at 97.33%. Compared to Case
1 (IAQ‐CO2 = 78 38%, IAQ‐PM2 5 = 89 52%), Case 2
(IAQ‐CO2 = 100%, IAQ‐PM2 5 = 72 57%), and Case 3
(IAQ‐CO2 = 23 24%, IAQ‐PM2 5 = 95 33%), these
results demonstrate that the integrated control of
CO2 and PM2.5 can reliably provide comfortable IAQ.

• The fan energy usage for each case was as follows:
Case 1, 223.65 kWh; Case 2, 207.74 kWh; Case 3,
205.37 kWh; and Case 4, 208.93 kWh. Although the
optimal ventilation strategy in Case 4 did not achieve
the lowest energy consumption, the difference between
Case 3 and Case 4 was a mere 1.75%. This slight dif-
ference suggests that while integrated control may
improve IAQ, it could potentially increase energy
usage, depending on the environment in which the
optimal ventilation strategy is applied.

• The performance of the optimal ventilation strategy
can be influenced by the presence and efficiency of
PM2.5 filters in the VAV system. To verify this, tests
were conducted by incrementally increasing the filtra-
tion rate from 0.0 to 0.8. When the filtration rate was
0.0, the strategy operated in PM2.5 mode 99.52% of
the time, yet IAQ-PM2.5 was 0%. As the filtration rate
increased, the proportion of CO2 mode also increased.
Notably, when the filtration rate increased from 0.4 to
0.6, IAQ-PM2.5 surged from 9.81% to 90%, and at a fil-
tration rate of 0.8, the performance was excellent with
IAQ-CO2 at 100% and IAQ-PM2.5 at 97.33%. These
results confirm that the optimal ventilation strategy
can provide comfortable IAQ in environments equipped
with high-efficiency PM2.5 filters.

In summary, these results demonstrate that the optimal
ventilation strategy can achieve multiobjective optimal con-
trol without relying heavily on conventional optimization
functions. It was also shown that, even with environmental
changes, this strategy effectively maintains CO2 and PM2.5
levels within comfort thresholds. Based on the effectiveness
of this approach, applying the optimal ventilation strategy
to actual buildings is expected to simplify development costs
and system maintenance, ultimately reducing overall build-
ing operation costs, while ensuring comfortable IAQ during
non-HVAC seasons. Future research will focus on refining
the control strategies to provide year-round comfort by inte-
grating HVAC energy efficiency and occupant thermal
comfort.
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