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ARTICLE INFO ABSTRACT
Keywords: Accurate and complete building energy consumption data is essential for optimizing energy ef-
Adaptive neural networks ficiency, forecasting demand, and supporting energy management systems. However, missing

Building energy

Liquid neural network
Long short-term memory
Integrated weighted model

data from sensor malfunctions or communication failures can reduce the effectiveness of data-
driven decision-making. This study introduces the integrated LNN-LSTM weighted model
(ILLWM), a novel imputation approach that combines the adaptability of liquid neural networks
(LNN) with the temporal modeling capabilities of long short-term memory (LSTM) models.
Imputed values are generated using an RMSE-based weighted approach. ILLWM was tested on
real-time energy consumption data from three building types, missing completely at random
scenarios with missing rates of 20 %, 30 %, and 40 %. Results showed ILLWM significantly
outperformed other imputation methods, including Soft-Impute, KNN, RF, SVM, MLP, Trans-
former networks, LSTM, and LNN. For commercial buildings with 40 % missing data, ILLWM
achieved RMSE reductions of 76.9 % and 89.6 % over LNN and LSTM, respectively. For hospital
buildings, improvements included RMSE reductions of 6.12 % over LNN and 31.93 % over LSTM.
The ILLWM closely matched actual data, outperforming traditional and machine learning ap-
proaches. These results demonstrate the potential of the ILLWM to enhance data reliability,
enabling more accurate energy demand forecasting and the development of sustainable energy
management strategies in diverse building environments.

1. Introduction

Global energy demand continues to rise, driven by population growth, urbanization, and increased energy consumption across
various sectors, with buildings accounting for about one third of total energy use worldwide [1]. The growing energy demand, coupled
with the urgent need to mitigate climate change, has led to the widespread adoption of Building Energy Management Systems (BEMS)
to improve energy efficiency, optimize consumption, and reduce environmental impact [1]. Enhanced by advancements in machine
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Nomenclature

ILLWM Integrated LNN-LSTM Weighted Model
LNN Liquid Neural Network
LSTM Long Short-Term Memory

ML Machine Learning
MLP Multilayer Perceptron
RF Random Forest

SVM Support Vector Machine

ODE Ordinary Differential Equation

MCAR  Missing Completely at Random

RMSE Root Mean Square Error

AMI Advanced Metering Infrastructure
KEPCO Korea Electric Power Corporation

KNN k-Nearest Neighbors

PI-DAE  Physics-Informed Denoising Autoencoder

CNN Convolutional Neural Network
RNN Recurrent Neural Network

GAN Generative Adversarial Network
NAS Neural Architecture Search

learning (ML) and artificial intelligence (AI), BEMS is transforming the energy sector by addressing complex analytical challenges and
enabling more efficient energy management [2]. A key component of its efficiency is accurate electric load forecasting, which heavily
depends on large amounts of automated metering data that monitor power usage by different devices [3]. However, such data is often
incomplete due to gaps arising from equipment non-functionality, signal transmission failures and physical disturbances [4,5]. Missing
data has significant impact on the performance of ML algorithms, as these models rely on complete datasets for effective training. To
address this issue, imputation methods are employed, which involve replacing missing values with plausible estimates while main-
taining the integrity of datasets used in statistical analysis [6].

Data imputation has become increasingly important, with applications in fields such as pharmacometrics, PV generation fore-
casting, and energy management systems [7-9]. There are over 150 known imputation methods, generally classified into three cat-
egories: traditional statistical methods, ML approaches, and deep learning techniques [10]. Traditional methods, such as hot deck, cold
deck, and mean imputation, along with advanced techniques like linear interpolation and ARIMA, often struggle to capture complex
temporal patterns in real-world data [11-14]. ML-based methods, including SoftImpute, KNN, and MICE-LightGBM, improve accuracy
by leveraging data relationships, while models like Random Forest (RF), Support Vector Machine (SVM), and Multilayer Perceptron
(MLP) effectively handle non-linear and dynamic data [15-21]. Recently, deep learning architectures such as generative adversarial
networks (GANSs), recurrent neural networks (RNNs), convolutional neural networks (CNNs), and self-attention mechanisms have
emerged as powerful tools for imputation [22,23]. GANs excel at generating realistic data, RNNs capture temporal dependencies, CNNs
identify spatial patterns, and self-attention mechanisms effectively model long-range dependencies, making them highly effective for
complex data scenarios.

Data imputation has found applications in the building energy management research. Early approaches to data imputation in the
building sector primarily relied on simple statistical techniques, such as mean substitution and linear interpolation. While compu-
tationally efficient, these methods often failed to capture complex dependencies in energy datasets [24]. These limitations are
addressed by introducing a pattern-recognition-based ensemble framework for sensor data imputation [25]. The framework involved
generating a validation dataset from sensor patterns and testing a pool of imputation methods to identify optimal approaches for each
sensor. Applied to 18 sensors in a real campus building, this method demonstrated an average accuracy improvement of 18.2 % over
single-method approaches, showcasing the value of customized ensemble techniques.

ML techniques have further advanced the field by leveraging building-specific characteristics to improve imputation accuracy. One
study proposed a novel method based on Mixture Factor Analysis (MFA) tailored to building electric load data [26]. By incorporating
insights into the variability and characteristics of building loads, this method effectively captured unique patterns, resulting in
enhanced imputation performance. Findings from this study with real datasets demonstrate that MFA outperforms conventional
imputation techniques, underscoring the value of incorporating domain-specific insights into data-driven energy management
strategies.

Deep learning has brought transformative capabilities to data imputation by enabling the modeling of complex patterns and long-
term dependencies. The LSTM-BIT (Bi-directional Imputation and Transfer Learning) model was developed by combining the
sequential modeling strengths of Long Short-Term Memory (LSTM) networks with the adaptability of transfer learning [27]. This
hybrid approach addressed various missing-data scenarios, including random, continuous, and high-rate missing data, and out-
performed traditional methods by achieving 4.24-47.15 % lower Root Mean Error RMSE in a case study on campus laboratory energy
consumption.

Another study introduced a multidimensional context autoencoder using image-based reconstruction techniques to address missing
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data in building energy datasets [28]. By reshaping energy data into two-dimensional formats, the model identified spatial and
temporal patterns, enhancing the accuracy of imputation for large data gaps. The study tested the Partial Convolution (PConv) method
on a benchmark dataset of 1479 global energy meters, encompassing diverse building and meter types. Results demonstrated that
PConv outperformed other approaches, including 1D-CNN and weekly persistence methods, by reducing Mean Squared Error (MSE) by
20 %-30 %. This research underscores the utility of deep learning techniques, such as PConv, in handling complex missing patterns and
provides a scalable framework for accurate energy data reconstruction.

Deep networks also pose challenges, particularly overfitting when applied to small or sparse datasets. This issue was explored in the
context of deep RNNs for energy forecasting [29]. The study tested four imputation methodologies, emphasizing the sensitivity of gap
size and data availability on imputation accuracy. Regularization techniques were employed to mitigate overfitting, achieving a mean
absolute error of 2.1 in forecasting tasks. This work highlighted the importance of balancing model complexity and generalizability to
ensure robust performance.

Hybrid models integrating multiple architectures have demonstrated substantial advancements in imputation accuracy [30]. By
incorporating a data augmentation strategy, existing deep learning models can be further optimized for reconstructing missing energy
time-series, even in limited data regimes. For instance, a convolutional denoising autoencoder, combined with augmentation tech-
niques, achieved a 37 %-48 % reduction in average RMSE for continuous and random missing data scenarios. Such strategies showcase
how hybrid frameworks, like CNN-RNN models and augmentation-enhanced autoencoders, effectively address spatial and temporal
inconsistencies while minimizing computational overhead, underscoring their practicality for energy data imputation. Similarly, the
LSTM-BIT model exemplifies the power of hybrid approaches in overcoming the limitations of standalone techniques [27].

Recent studies emphasize the importance of interpretability and validation in building energy modeling for missing data impu-
tation. Integrating prior knowledge, such as building physics principles, into ML frameworks improves both accuracy and practical
utility. For instance, Physics-informed Denoising Autoencoders (PI-DAEs) incorporate physics-based constraints in their loss functions,
enhancing interpretability while aligning with real-world energy dynamics [31]. A recent study also employed Bayesian networks to
detect and rectify sensor faults in their imputation model, improving system reliability [32]. Additionally, attention mechanisms and
advanced architecture have proven effective in recovering complex patterns from multivariate time-series data, particularly in sce-
narios with extensive missing values [33].

While a diverse array of imputation methods has emerged, which can be broadly categorized into traditional statistical methods,
machine learning approaches, and deep learning techniques, it is important to acknowledge that significant challenges still persist.
Traditional statistical methods such as hot deck, cold deck, mean imputation, linear interpolation, and ARIMA struggle to capture
complex temporal patterns in real-world datasets, particularly when facing higher missing rates [11-14]. ML-based methods, including
SoftImpute, KNN, MICE-LightGBM, RF, SVM, and MLP, have improved accuracy by leveraging data relationships, yet often falter in
dynamic and high-missing-rate scenarios, especially in complex building energy datasets [15-21]. Recent advances in deep learning,
such as GANs, RNNs, CNNs, and self-attention mechanisms, have shown promise due to their capacity to model temporal dependencies
and complex patterns effectively [22,23]. Nevertheless, these models still face inherent limitations, including challenges in general-
ization, computational overhead, and performance degradation when data distributions change or become increasingly sparse [34,
35].

Recent advancements have led to the development of Liquid neural networks (LNN), based on the principles of liquid time-constant
networks (LTCNs). Unlike conventional neural networks, LNNs incorporate continuous-time dynamics, enabling them to adapt more
readily to dynamic, evolving data [36]. LNN’s unique architecture shows promising potential for managing the complex, real-world
variability of energy consumption data [37-39]. Inspired by biological systems, LNN operates as continuous-time neural networks with
inherent adaptability, making them particularly effective for time-series and dynamic data [40-42]. Unlike traditional neural net-
works, which often struggle with noisy and variable datasets, LNN uses ordinary differential equations (ODEs) to capture complex
temporal dependencies, allowing them to process real-time data more effectively [39].

LNN has found applications in various fields. For instance, in financial forecasting, LNN have outperformed traditional models by
dynamically adjusting to market fluctuations, offering enhanced predictive accuracy under non-linear conditions [43]. Similarly, in
communication systems, LNN have been successfully deployed to manage channel state information (CSI) in Multiple input, Multiple
output (MIMO) systems, providing higher spectral efficiency and reduced computational complexity [44]. Their implementation on
neuromorphic hardware for tasks like image classification has also demonstrated superior energy efficiency and accuracy [45].

A critical evaluation of recent literature identifies the following key research gaps: (i) existing methods frequently neglect high
rates of missing data (20 % or more), which are common in real-world energy datasets; (ii) current imputation techniques inadequately
address complex, dynamic, non-linear temporal dependencies typical of energy consumption in commercial, residential, and hospital
buildings; and (iii) limited robustness and adaptability of methods under changing data conditions, particularly in Missing Completely
At Random (MCAR) scenarios. To address these gaps, we propose the hypothesis that integrating LNN, known for their adaptability,
with LSTM models, recognized for their temporal modeling capabilities, will substantially improve imputation accuracy. Conse-
quently, our research addresses the question: "Can an integrated LNN-LSTM weighted model (ILLWM), leveraging LNN’s adaptability
and LSTM’s temporal modeling, significantly outperform existing methods in accurately reconstructing missing energy consumption
data in buildings under high MCAR scenarios?"

To address the limitations of current imputation methods and explore the potential of LNNs for this purpose, this study aims to:

e Introduce a novel ILLWM that effectively combines the adaptability of LNN and the robust temporal modeling capabilities of LSTM
through an RMSE-based weighting mechanism.
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e Conduct a comprehensive evaluation of the proposed model using real-world building energy consumption datasets across com-
mercial, residential, and hospital buildings under varying MCAR missing rates (20 %, 30 %, and 40 %).

e Demonstrate significant improvements in imputation accuracy (lower RMSE values and higher correlation) compared to both
traditional statistical methods and advanced ML-based approaches, highlighting the practical benefits of the ILLWM for enhancing
data-driven decision-making in energy management systems.

The structure of this paper is organized as follows: Section 2 presents the methodology, including the proposed framework,
theoretical foundations of LNN and LSTM, details on the proposed ILLWM, data collection, preprocessing, missing data introduction,
benchmark models, model setup, and evaluation. Section 3 presents results, analyzing model performance using RMSE and correlation
metrics. Section 4 discusses findings, ILLWM implications, and limitations. Section 5 concludes with key insights and future research
directions.

2. Methodology

The methodology of this study consists of two key components: (i) the design and formulation of the proposed imputation
framework (ILLWM), and (ii) the experimental process to evaluate its performance using real-world building energy datasets. The
proposed framework, detailed in Section 2.1, describes the architectural design of the ILLWM, explaining the theoretical foundations of
LNN and LSTM and the RMSE-based weighting mechanism. Section 2.2 onward outlines the step-by-step experimental process,
including data collection, preprocessing, missing data generation, benchmark model setup, and model training and evaluation pro-
cedures. Fig. 1 presents the overall flowchart summarizing the full methodology. The process begins with data collection and pre-
processing of real-world energy consumption data, followed by the artificial introduction of missing values to simulate real-world
incomplete datasets. Various benchmark models, spanning traditional statistical methods and advanced machine learning techniques,
are applied to establish baseline performance. Subsequently, the ILLWM is implemented by independently training the LNN and LSTM
models and integrating their predictions using an RMSE-based weighting mechanism. Finally, the performance of all models is
evaluated using RMSE and Pearson correlation coefficient metrics to assess the accuracy and robustness of the imputation process.

1. Data collection and pre-processing 3. Benchmark models 5. Implementing ILLWM

™,

Data collection 4 Models used for benchmarking Calculation of the weights \
\ * Process input data independently

: A® _
HHHE ﬁ m * Basic ML: Softimpute, KNN + Generate benchmark models

respective estimates

Commercial Residential Hospital > * Traditional ML: RF, SVM, MLP
P ¢ (Calculation of the weight for
* Collect KEPCO ~ AMI  energy + Advanced ML: Transformer, LNN (@)
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residential, hospital buildings (one ) LSTM (@pstm)
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& K Integration of standal del
= i ntegration of standalone models
Pre-processing ) 4. Model setup )
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Fig. 1. Flowchart of the methodology for the ILLWM imputation process.
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2.1. Proposed framework

Fig. 2 shows the architecture of the proposed ILLWM model. The process starts with preprocessed and encoded data, which is fed
into the LNN and LSTM modules. The foundation for LNN and LSTM originates from RNNs, which model sequential dependencies
using hidden states [51]. The outputs from these models are combined using a weighting system with fixed weights derived from RMSE
calculations, integrating LNN’s adaptability with LSTM’s sequential modeling for an optimized imputed sequence. The subsequent
sections outline the theoretical aspects of LNN, LSTM, and ILLWM. As illustrated in Fig. 2, LNN and LSTM operate independently to
preserve their distinct modeling capabilities. Their final outputs are then combined through a weighted sum, with the weighting
mechanism based on each model’s RMSE performance on the specific dataset. The detailed explanation of this integration process is
provided in Section 2.1.3.

2.1.1. LNN
LNNs advance traditional RNNs through continuous-time neural processing, enabling adaptive memory retention based on real-
time variations [37]. Unlike conventional RNNs, which update hidden states at fixed time steps, LNNs employ Neural ODEs to
model hidden states dynamically, as given by equation (2), [42].
dh(t) 1

- ) h(t) + LeakyReLU(Wyh(t) + W,x(t) + b) (€D)

where h(t) is the hidden state at time t, x(t), 7(x(t)) , represents a time-dependent decay factor, regulating memory retention , W, and
W, are trainable weight matrices, and b is the bias term. The LeakyReLU is the activation function, defined as:

x,x >0
> (2)

LeakyReLU(x) = { wx <0

This prevents neuron saturation and ensures stable gradient propagation, with « typically set to 0.01 to ensure continuous gradient
flow [46]. This choice enhances the stability of Neural ODE solvers, making LNNs particularly suitable for time-series imputation tasks.

A key feature of LNNs is their Liquid Time-Constant (LTC) mechanism, which dynamically adjusts time constants based on input
characteristics. The mechanism is defined by the equation:

t(x(t) =70 + Y_a; - LeakyReLU(W,x;(t) +b.) 3)

where 7y is the base time constant , ¢; is learnable scaling coefficient, and W, and b, are the trainable weight matrix and bias term,
respectively. The dynamic adjustment ensures short-term adaptability while preserving longer patterns. The memory retention dy-
namics follow an exponential decay model:

Liquid Layer

Encoding Layer Spiking Layer Readout layer Classifier

—
Dataset I III I
[ x]

Weight
Calculation LNN Weighted Output

Output for LNN
O O—
Final Output
E}

© Excitatory neurons

©/nhibitory neurons

Addition

LTMt-1 (Memory)

Weight
Calculation LSTM

Output

Input gate

©)
35Ny

Forget gate ‘—‘
ft H Weighted Output
for LSTM

STMt-1 =

(Hidden state)

8 Xt (Input)

Dataset

Fig. 2. Architecture model showing the integration of LNN and LSTM for imputation, including a weighting system to generate the final result.
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h(t)=hee © +/e T LeakyReLU(W,h(zr) + Wyx(r) +b)d “4)
0

t
1
| H=dr
The first term, hpe /0 ) , represents exponential decay, controlling how past information fades over time, while the second
term accumulates new information, refining the model’s understanding of sequential dependencies [37,42].

2.1.2. LSTM

LSTMs employ gated recurrent units that regulate information flow across sequential time steps [47,48]. The LSTMs consists of
three primary gates: the forget gate (f;), which determines what past information to discard; the input gate (i;), which regulates new
information storage; and the output gate (o), which controls the contribution of stored memory to the output [47,48]. The mathe-
matical formulation of these gates is:

fz:U(Wf[ht—laxz] +bf) (5)
i = O'(Vvi[ht—lyxt] + bi) 6)
Ot = O'(Wo [ht—lyxt] + bo) )

where h;_; represents the previous hidden state, x; is the current input, ¢ is the sigmoid activation function and Wy, W;, W, and by, b;, b,
are trainable weights and biases, respectively. The cell state C; is updated as:

Ci=f;-Cr1 +1, - tanh(W,[h,_1, %] + b) ®

And the hidden state h; is determined by:
h; =o, - tanh(C;) 9)
These mechanisms ensure effective long-term sequence modeling, making LSTMs particularly well-suited for energy forecasting

applications [49].

2.1.3. ILLWM

The ILLWM is formulated to enhance the imputation of missing values in time-series energy consumption datasets through a
systematic weighting mechanism. The transition from LNN and LSTM predictions to their weighted integration follows a structured
mathematical approach to determine each model’s relative contribution. Let x; represent the input at time t containing missing values.
The imputed estimates from the LNN and LSTM components are denoted as follows:

¥i, Inn = fian (x;) (10)
¥i, Istm = frsm (x;) (11)

where fiyy and fisry denote the imputation functions of the respective models. To quantify the imputation accuracy of each model, the
RMSE is computed using the observed values in the dataset. The RMSE values for the LNN and LSTM models are given by:

RMSE(Inn) = % > (i =i lnn)® (12)
i=1

13)

where y; represents the actual observed value, and n is the total number of missing values considered in the evaluation.
To optimize the imputation process, ILLWM assigns weights based on inverse RMSE values, ensuring that the model with the lower
RMSE has a greater contribution to the final imputed value. The weight calculations are given by:

1
RMSE,,
@i =" " (14)
RMSEpy, | RMSEggy
1
RMSE,
WDism =—1—— 71 = 1 15)

RMSEp, | RMSEumy

After computing the weights for each model, the final imputed value for each missing data point is obtained as a weighted sum of
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the individual model outputs. This final imputed value is computed as:
‘)//\i:aJlnn-.)//\ivlnn‘i'wlxm'.)//\i%lsm (16)

The weights @, and wy,, are computed based on the RMSE values obtained from the test data for each specific building type and
missing data scenario. These weights are static within a dataset, meaning that for a given building type and missing rate, the same
weights are applied to all imputed values. However, they are not globally fixed; instead, they are independently computed for each
building type and missing data rate to reflect the unique characteristics of that dataset. Since energy consumption patterns vary
substantially across commercial, residential, and hospital buildings and are further influenced by seasonal operational patterns, the
RMSE values of the LNN and LSTM models differ across datasets. Therefore, the resulting weights wy,, and wy,, are recalculated for
each dataset to optimize the imputation performance according to the building’s temporal dynamics and operational characteristics. A
similar method is used by Sun et al. [50], where inverse expected error variance is applied to improve ensemble accuracy in tem-
perature forecasting. In our study, we adopt a comparable approach but use the inverse RMSE, serving as a practical proxy for model
variance, to determine weights for combining predictions. This weighting strategy follows the broader principle of ensemble modeling
practices, where inverse error-based weighting is employed to assign greater importance to models with higher predictive reliability.
Additionally, the idea of weighting based on proximity to known data is conceptually aligned with inverse distance weighting (IDW)
techniques used in time series imputation [50,51]. While IDW relies on spatial or temporal closeness, our framework instead assigns
greater importance to the model with lower prediction error for a given data context thus generalizing the IDW logic to model se-
lection. This design ensures that each dataset benefits from a weighting strategy tailored to its specific short-term and long-term
dependencies, aligning with the distinct energy usage patterns and fluctuations present in different building types and seasons.

2.2. Data collection and pre-processing

This study used electricity consumption data obtained from the Advanced Metering Infrastructure (AMI) provided by the Korea
Electric Power Corporation (KEPCO) for three building types: Type-A (commercial buildings), Type-B (residential buildings), and
Type-C (hospitals). The dataset spans from January to December 2022 and records 15-min interval consumption data from buildings in
Seoul and Gyeonggi-do, South Korea. Initially, nine buildings were considered for each category, totaling 27 sites. A minimum
threshold of approximately 33,000 observations was applied to selected sites to minimize the impact of missing values. One repre-
sentative building from each category was chosen which met this criterion, with 33,217 (Type-A), 33,309 (Type-B), and 33,022 (Type-
C) observations.

Data preprocessing was carried out to ensure data suitability for analysis. The dataset was labeled with features reflecting temporal
consumption patterns. A binary indicator denoted working hours and working days, assigned as 0 for non-working hours and
weekdays, and 1 for working hours and weekends. General working hours (9AM - 6PM) were applied across all building types for
simplicity in modelling, without additional segmentation for specific contexts like hospitals, which may include emergency rooms and
inpatient operations. Seasonal variations were also encoded numerically (0 for winter, 1 for spring, 2 for summer, and 3 for autumn) to
account for heating and cooling trends. Additionally, "hour of the day’ was label-encoded with its corresponding hour to capture daily
consumption patterns.

To standardize the dataset, a standard scaler was applied, normalizing values to a mean of zero and standard deviation of one. The
formula for standard scaler normalization is:

X—p
c

Xnormalized = (17)
where, for the X,omalized Value, X is the actual value while y is the mean of the dataset and ¢ is the standard deviation of the dataset
[52]. Post-imputation, the estimated values were rescaled using the inverse transformation and integrated back into the dataset to
replace missing entries.

2.3. Introducing missing data

There are three methods for introducing missing data into a dataset: MCAR, Missing at Random (MAR), and Missing Not at Random
(MNAR) [53,54]. To simulate real-life scenarios in datasets where missing data points are common, we purposefully generated missing
data using the MCAR technique [55]. MCAR data is generated by randomly removing a specified proportion of values from a complete
dataset, ensuring that the probability of missingness is independent of any observed or unobserved variables. This was achieved using a
Bernoulli distribution, where each data point was assigned a "missing" or "not missing" status based on a specified probability [6,56].
We tested this method with three missing data levels (20 %, 30 %, and 40 %) to evaluate the imputation models’ performance across
varying degrees of data loss [57]. A copy of the original complete dataset was preserved as the ground truth for later evaluation. After
applying MCAR, the dataset was divided into two subsets:

e Complete rows: Records with no missing values after MCAR application.
e Incomplete rows: Records with at least one missing value.

The complete rows were further split into training (80 %) and testing (20 %) subsets. The training subset was used to train the
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imputation models, while the testing subset evaluated their generalization on fully observed data. Once trained, the models were
applied to the incomplete rows to impute missing values. Finally, imputation performance was assessed by comparing the imputed
values against the preserved ground truth in the incomplete rows using RMSE and Pearson’s correlation coefficient.

2.4. Benchmark models

To identify the most effective approaches for data imputation, we conducted a comprehensive benchmarking study, evaluating a
range of models from traditional ML techniques to advanced deep learning architectures. Basic ML techniques included Soft-Impute,
which uses matrix completion, and KNN, which imputes via nearest neighbors, both leveraging data relationships for accuracy [56,
62]. For complex tasks, we tested RF (robust to outliers, captures non-linear patterns), SVM (effective for high-dimensional data), and
MLP (flexible for non-linear, heterogeneous data) [56,62]. Advanced deep learning models such as Transformer networks (atten-
tion-based for long sequences) and LSTM (designed for temporal dependencies) were used to address time-series dynamics [63,64].
Lastly, LNNs, inspired by biological systems and adapts dynamically to evolving patterns, is also implemented for building energy
imputation [41].

2.5. Model setup

The tests were carried out on a high-performance desktop computer equipped with a 13th Generation Intel Core i5-13400F CPU
(2.50 GHz) and 64 GB of memory. The implementation and training of deep learning models were conducted using Python 3.9.0 and
PyTorch 2.3.0 [58].

2.5.1. Hyperparameter optimization

The process of hyperparameter optimization was integral to ensuring the model’s performance. A systematic grid search approach
was employed to explore a range of hyperparameter combinations, such as learning rates, batch sizes, dropout rates, and architectural
configurations.

The LNN model was configured with four hidden layers (32, 64, 32, and 32 neurons) and trained using the Adam optimizer with
learning rates between 0.001 and 0.0001. Batch sizes of 32, 64, and 128 were tested, and a 0.2 dropout rate was applied to mitigate
overfitting, with early stopping (patience = 20 epochs) to enhance efficiency [59]. The model underwent training for up to 250 epochs,
leveraging an ODE Solver for temporal modeling. The LSTM model following a similar setup, consisted of four layers (64, 32, 128, 64
neurons) and was optimized using the same grid search methodology.

The Transformer model featured four layers (64, 128, 64, 128 neurons) with a multi-head self-attention mechanism, resulting in a
high parameter count (520,193). In contrast, the MLP had four layers (100, 32, 32, 100 neurons) with a significantly lower parameter
count (8,289), making it computationally efficient. Table 1 provides a comprehensive summary of the architectural configurations and
parameter specifications for each deep learning model used in this study. Table S1 provides details on their computational perfor-
mance, including training times and memory usage.

Alongside deep learning models, traditional ML were also tested. Softimpute applied matrix factorization, while KNN (with k = 5)
balanced bias-variance trade-offs for robustness. RF was tuned via grid search for hyperparameters like n-estimators (50-300), max
depth (None, 10, 20, 30), and min samples split (2-10). SVM (LinearSVR) was optimized for regularization parameter C (0.1, 1, 10) and
epsilon (0.01, 0.1, 1) to enhance predictive performance.

2.6. Implementing ILLWM

The implementation of ILLWM follows the framework outlined in Section 2.1.3 to impute missing values in energy consumption
datasets. Using preprocessed data with missing values introduced at 20 %, 30 %, and 40 % via the MCAR technique, the process is
carried out in three key steps. First, LNN and LSTM models independently generate imputation estimates for missing values. Next, the
performance-based weighting mechanism is applied, where RMSE determines each model’s contribution to the final imputed values.
Finally, the imputed values are denormalized and integrated into the dataset, replacing missing entries. ILLWM’s performance is then
evaluated through RMSE and Pearson’s correlation coefficient, as discussed in the next section.

Table 1
Comparison of layers and parameters of the deep learning models used.
Model Input data (as sub- Number of neurons/ Number of Total number Total number of Total number of
categorical features) cells in each hidden hidden/encoder of layers neurons (Input + parameters (weights +
layer layers hidden Output) bias)
LNN 5 32, 64, 32, 32 4 6 166 5473
LSTM 5 64, 32,128, 64 4 6 326 59841
Transformer 5 64, 128, 64, 128 4 6 390 520193
MLP 5 100, 32, 32, 100 4 6 270 8289
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2.7. Model evaluation

We used two main metrics to evaluate the performance of the chosen models: RMSE and Pearson Correlation Coefficient. The RMSE
was computed to measure the average size of error between the estimated values and the real data. RMSE has the ability to measure the
precision of predictive models, especially used in regression assignments to evaluate model performance. The RMSE formula is given

by:
A o2
RMSE=, = ?:1 0 —¥) (18)

where, y; is the real value while y; is imputed value and n is the number of observations. A lower RMSE value shows greater precision in
the imputation procedure, assessing the efficiency and reliability of imputation models, as it indicates a less significant error between
the imputed and observed values.
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Fig. 3. Imputation values of electrical consumption in kWh for type A (commercial) buildings using different models when the missing values are
introduced using MCAR at 40 %, missing rate.
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As another metric to evaluate imputation accuracy, we computed the Pearson correlation coefficient to assess the linear association
between the imputed and real data points. The formula used to calculate the Pearson correlation coefficient is as follows:

i (i —x)(yi —¥)
r—= i=1 (19)
\/i1 (% —X)? ; >y

where, r is the correlation coefficient, x; and y; are actual and imputed values respectively while X and y are the means of actual and
imputed values respectively. A high value of correlation coefficient shows strong correlation which indicates that the imputed data
effectively represents the connections found in the original dataset, preserving its integrity for further examination [60].

3. Results
3.1. Performance of the existing models

Fig. 3 shows a comparative analysis of various imputation methods for electricity consumption data across different seasons, with
missing values introduced using the MCAR technique at a 40 % missing rate. The panels on the left depicts a representative week from
each season, accompanied by zoomed-in views of a 6-h segment within a day from the corresponding week to emphasize model
performance on the right.

The performance of various models, from simpler ML techniques to advanced neural networks, reveals distinct trends in their
ability to handle missing energy consumption data. Softimpute and KNN offer slight improvements, managing to approximate some
peaks and troughs but still lagging during rapid changes, leading to over-smoothed results, particularly in spring and autumn. RF and
SVM generally perform better, closely following consumption patterns and capturing peaks and troughs more effectively, though RF
sometimes shows a minor delay in responding to rapid shifts. Advanced models, particularly the MLP and transformer, consistently
align with the actual data and effectively capture seasonal patterns. The transformer model demonstrates strong responsiveness to
sudden changes, especially during high-consumption fluctuations in summer and the dynamic usage patterns observed in spring.
Neural network models, particularly LNN, excel across all seasons by capturing fine variations. While LSTM also performs well, it
occasionally over-smooths some fluctuations, missing finer details that LNN effectively captures, especially during high-consumption
periods.

Similarly, in the hourly snapshots, the simpler approach, such as Softimpute, is consistently inadequate, underestimating variations
and smoothing over critical peaks and valleys. KNN, RF, and SVM capture broader trends but miss finer details within hours. MLP and
Transformer closely follow actual data, particularly during periods of rapid change in summer and winter, with Transformer being
more adept at handling complex fluctuations. LNN provides the highest precision in this hourly analysis, capturing subtle changes,
while LSTM closely follows but occasionally smooths certain peaks. Across all seasons, the LNN imputation model consistently per-
forms best, accurately capturing both weekly trends and hourly details. LSTM follows closely, providing strong performance but
occasionally smoothing over small fluctuations. Transformer and MLP also show robust performance, particularly in their respon-
siveness to sudden changes, although they do not match the accuracy of LNN and LSTM.

Table 2 provides a comparative analysis of RMSE across the evaluated models. The results demonstrate that LNN and LSTM
consistently achieved the lowest RMSE scores across all building types (A: Commercial, B: Residential, C: Hospital). For Type A
buildings, both models significantly outperformed traditional ML models and advanced imputation techniques, particularly at higher
missing rates, with LNN and LSTM achieving RMSEs as low as 0.440. Similarly, for Type B buildings, LNN and LSTM showed superior
performance, yielding much lower RMSEs compared to methods like RF and MLP with LNN and LSTM scoring as low as 0.16. For Type
C buildings, LSTM and LNN continued to excel, achieving RMSEs as low as 0.29 and 0.21, respectively, at high missing rates. These
results confirm that LNN and LSTM are highly effective for handling complex temporal dependencies in energy consumption data,
establishing them as suitable models for missing data imputation under MCAR conditions.

Table 2
Comparison of RMSE of different imputation methods across building types and missing rates.
Building type Missing rate Imputation Package Traditional ML Advanced ML LNN
Soft Impute KNN RF SVM MLP Transformer LSTM
0.2 10.01 8.45 8.14 12.03 10.03 7.61 0.55 0.24
Type A 0.3 11.06 10.65 11.43 13.43 11.72 6.85 0.29 0.17
0.4 12.33 11.87 12.04 15.89 12.98 8.5 0.98 0.44
0.2 55.03 51.42 53.65 55.37 45.21 65.08 0.61 0.1
Type B 0.3 68.84 60.67 61.65 63.39 50.54 71.12 0.54 0.35
0.4 79.94 71.44 72.77 71.07 60.64 71.74 0.41 0.16
0.2 29.1 27.43 29.16 30.01 25.67 33.1 0.78 0.69
Type C 0.3 35.33 30.32 31.43 36.17 26.35 30.71 0.29 0.16
0.4 41.02 35.2 38.01 37.04 34.2 32.43 0.29 0.21
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3.2. Integrated LNN-LSTM weighted model

In this study, the novel proposed model, ILLWM, combined the strengths of both LNN and LSTM by summing their weighted
imputed values, leveraging the advantages of each model. Fig. 4 shows a detailed comparison of the LNN model, LSTM model and the
proposed ILLWM for electricity consumption data across four representative weeks from each season for type A buildings at 40 %
missing rate. A zoomed-in view of a 5-h segment from a day within each week is displayed alongside the corresponding week.

Throughout the seasons, the ILLWM demonstrates adaptability and accuracy in imputing electricity consumption data by
combining the strengths of both LSTM and LNN. In winter, where demand is stable, ILLWM effectively tracks minor fluctuations. For
instance, on January 31, when consumption dropped from 350.1 kWh (3:45 a.m.) to 348.84 kWh (4:30 a.m.), ILLWM predicted
350.092 kWh and 348.734 kWh, closer to the observed values than LNN (350.554 kWh, 349.300 kWh) or LSTM (349.069 kWh,
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Fig. 4. Imputed electrical consumption values (in kWh) for Type A (commercial) buildings using the standalone LNN model, LSTM model, and the
proposed ILLWM, with missing values introduced at a 40 % rate using the MCAR technique.
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347.480 kWh). In spring, with more pronounced peaks and valleys, ILLWM accurately captured rapid changes. On May 3, when
consumption dropped from 378.18 kWh (3:15 a.m.) to 375.12 kWh (4:00 a.m.), ILLWM predicted 378.34 kWh and 375.29 kWh,
outperforming LNN (378.55 kWh, 375.51 kWh) and LSTM (377.86 kWh, 374.83 kWh). In summer, with frequent fluctuations, ILLWM
effectively followed sudden shifts. On July 30, when demand rose from 400.14 kWh (12:00 a.m.) to 402.84 kWh (12:30 a.m.), ILLWM
closely estimated 399.62 kWh and 402.20 kWh, outperforming LNN (400.40 kWh, 403.08 kWh) and LSTM (397.89 kWh, 400.25
kWh). Autumn shows patterns similar to spring, and ILLWM performed better in this season, too. On October 19, when consumption
varied from 380.16 kWh (3:00 a.m.) to 376.38 kWh (4:00 a.m.), ILLWM predicted 380.16 kWh and 376.42 kWh, performing better
than LNN (380.54 kWh, 376.78 kWh) and LSTM (379.33 kWh, 375.63 kWh).

Similar results are observed for Type B and Type C buildings, as shown in Figs. S1 and S2, respectively. For Type B buildings, which
exhibit more stable energy consumption patterns compared to commercial or hospital buildings, the ILLWM consistently shows im-
provements over the standalone models. The combination of both models provides imputed values that are closer to the actual
consumption values, leading to more accurate imputation, though the performance gains are less pronounced than in Type A or Type C
buildings due to the lower variability in the data. In Type C buildings (hospitals), the ILLWM demonstrates the most significant
performance improvements by effectively managing both short-term operational fluctuations (captured by LNN) and broad patterns
driven by hospital schedules and critical equipment use (modeled by LSTM).

3.3. Improved imputation accuracy across building types

The results of the comparison of RMSE between the standalone LSTM, LNN, and the newly proposed ILLWM for type A, B, and C
buildings at 20 %, 30 %, and 40 % missing rates are shown in Fig. 5. ILLWM consistently outperforms the standalone models. In Type A
buildings, ILLWM achieves an RMSE of 0.102, significantly lower than LSTM’s 0.977 and LNN’s 0.440, with an improvement of 89.6 %
over LSTM and 76.9 % over LNN (Fig. 5a). For Type B buildings (Fig. 5b), the ILLWM again outperforms the standalone models across
all missing rates, with an RMSE of 0.130 which is 68.3 % lower than LSTM’s 0.411 and 12 % lower than LNN’s 0.148. Even though the
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Fig. 5. RMSE between the standalone LSTM, LNN, and the newly proposed ILLWM for a. type A — residential buildings, b. type B — commercial
buildings, and c. type C - hospital buildings.
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gains are more modest in this case, the ILLWM consistently shows the lowest RMSE. In Type C buildings (Fig. 5¢), the ILLWM provides
the best performance across the board with an RMSE of 0.199. This represents a 31.9 % reduction in error compared to LSTM, which
has an RMSE of 0.293, and a 6.1 % improvement over LNN’s RMSE of 0.212. Here, the LSTM model encounters the highest RMSE,
especially at the 0.4 missing rate, while the LNN performs better but still cannot match the ILLWM’s accuracy. These results highlight
the strength of the weighted model in handling missing data in more complex settings such as hospitals. The ILLWM consistently
provided the closest imputation results to the actual missing data, particularly for commercial and hospital buildings, achieving
significant reductions in RMSE.

Similarly, the correlation coefficient scores in Table 3 highlight the ILLWM’s strong performance across all missing rates and
building types. For instance, in type-B building, ILLWM achieves the highest correlation score of 0.9957 at a 40 % missing rate,
outperforming MLP (0.7828) and Transformer ML (0.9138). In type-A building, ILLWM maintains a correlation of 0.9968 at 40 %
missingness, surpassing MLP (0.7828) and Transformer ML (0.9438). For hospital buildings, ILLWM achieves 0.9996 correlation at the
40 % missing rate, outperforming KNN (0.772) and SVM (0.789). These results demonstrate ILLWM’s effectiveness in handling
complex, non-stationary datasets, particularly under MCAR conditions.

4. Discussion
4.1. Improvement in imputation with integrated LNN-LSTM weighted model

The study proposes a new ILLWM for imputing missing values in energy consumption datasets. The model demonstrates superior
performance across different building types, and temporal variations. The performance of the model was evaluated using statistical
analysis, particularly RMSE and Pearson’s correlation coefficient compared to the standalone models. One of the key strengths of
ILLWM is its ability to handle dynamic energy consumption datasets, which are influenced by factors such as seasonal changes, time of
day, and regional variations [59-61]. Prior ML models, such as RF, SVM, and MLP, have shown moderate success at lower missing rates
(up to 30 %) but tend to struggle with temporal dependencies at higher missing rates [62]. These models perform adequately under
simpler conditions but demonstrate limited effectiveness in handling complex, structured missing data scenarios in energy datasets
[21,63,64], [65].

The monthly and daily RMSE variability represented in Fig. 6a shows the model’s temporal stability. For commercial building, the
model maintains stable RMSE values throughout the year, with only slight increases in January and February under MCAR conditions,
likely due to increased heating demands. However, hospital buildings experience more fluctuations, particularly a spike in RMSE in
November, potentially due to operational changes and heightened energy demands during seasonal transitions. These results highlight
the model’s adaptability in managing diverse building types and consumption patterns while imputing missing values [14,66].
Moreover, day-wise analysis (Fig. 6 b) shows that hospital building experience spikes in RMSE on Fridays and Saturdays, suggesting
more complex energy patterns toward the end of the week. Despite these fluctuations, ILLWM consistently outperforms traditional
imputation methods, which often fail to capture such irregularities in energy consumption patterns [4,5]. The phenomenon of LSTM
underestimating energy consumption, as reported by Ghanim et al. (2022) and Prater et al. (2024) [67], [68], and LNN overestimating
energy consumption, as noted by Antonesi et al.(2025) [69], reflects their architectural differences. LSTM, designed for long-term
temporal modeling [70], tends to smooth out short-term fluctuations, leading to underestimation of sharp consumption peaks. In
contrast, LNN, which leverages continuous-time dynamics, responds more strongly to rapid variations [37]. These behaviors are
consistently observed across different building types and missing data rates because they originate from the models’ intrinsic learning
biases. Rather than applying a static offset or fixed weighting, ILLWM computes dataset-specific weights (once during testing for each
building type and missing rate), ensuring that imputation adapts to the operational and data completeness characteristics of each
dataset. These weights remain constant during inference for that dataset, optimizing both performance and computational efficiency.

The RMSE values generally increase with higher missing data rates for most cases (Fig. 5), as noted in some previous studies [27,
71]. However, for commercial buildings, there is a drop in RMSE as the missing data rate increases. This behavior could be attributed to
the proposed ILLWM architecture, which combines the strengths of LNN and LSTM networks and adjusts the weight of each
component. Since the ILLWM does not undergo any architectural shift as the missingness increases, particularly in the case of

Table 3
Correlation coefficients between real and imputed data across building types using various imputation methods.
Building type Missing rate Imputation Package Traditional ML Advanced ML LNN ILLWM
Soft Impute KNN RF SVM MLP Transformer LSTM
0.2 0.8589 0.8698 0.8769 0.8769 0.8769 0.9684 0.982 0.9858 0.9966
Type A 0.3 0.8088 0.8372 0.8271 0.8272 0.8272 0.9251 0.9835 0.9897 0.9982
0.4 0.7995 0.7928 0.7828 0.7828 0.7828 0.9138 0.9706 0.9741 0.9989
Type B 0.2 0.8805 0.8698 0.8769 0.8769 0.8769 0.9084 0.9742 0.979 0.9898
0.3 0.8309 0.8372 0.8271 0.8272 0.8272 0.9451 0.9926 0.9988 0.999
0.4 0.7989 0.7928 0.7828 0.7828 0.7828 0.9438 0.9797 0.9896 0.9968
Type C 0.2 0.8789 0.8934 0.8934 0.8998 0.9087 0.9743 0.991 0.9975 0.9989
0.3 0.8325 0.841 0.841 0.8548 0.8986 0.9686 0.9779 0.9989 0.9903
0.4 0.7895 0.772 0.772 0.7895 0.8754 0.9361 0.9703 0.989 0.9996
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Fig. 6. RMSE variability over months and days of the week at maximum 40 % missing rate.

commercial buildings, the data distribution follows a pattern where the weighted model assigns more weight to the component that
effectively captures trends under higher missing rates [50,51]. Additionally, the model is designed to generalize effectively with less
available data, avoiding overfitting and resulting in lower RMSE values and more accurate imputation. Overall, the RMSE trends
clearly demonstrate the reliability and consistency of the ILLWM across different building types and missing data scenarios.

4.2. Implications of the integrated LNN-LSTM weighted model

By combining LNN’s ability to capture sudden fluctuations and long-term patterns, and LSTM’s performance in handling temporal
dependencies, ILLWM addresses a critical gap in the literature, the handling of non-stationary data with high missing rates. Traditional
models often fail to capture both short-term fluctuations and long-term trends simultaneously, particularly in dynamic environments
like building energy management [34,35]. ILLWM’s integrated weighting mechanism bridges this gap, ensuring that the model adapts
to the characteristics of the data, and thereby improving imputation performance [72,73]. The ILLWM’s better performance in data
imputation has significant implications for building energy management. By improving the quality of imputed data, the ILLWM en-
ables more reliable energy analytics, enhances demand-side forecasting, reduces operational costs, and supports improved control
decisions within BEMS [26,27,74]. Practically, the model can be embedded into real-time energy monitoring infrastructures to
continuously correct missing or faulty readings from smart meters and sensors. This makes ILLWM highly suitable for deployment in
commercial buildings, residential complexes, and healthcare facilities where uninterrupted, accurate energy data is essential for
efficient facility operation and fault detection.

Moreover, by integrating LNN and LSTM, the ILLWM achieves a balance between accuracy and efficiency. Among the models
evaluated, MLP and LNN are inherently more computationally efficient due to their lower parameter counts and simpler architectures,
as demonstrated in Table 1. However, our study highlights that while LNN and LSTM outperform other models such as MLP and
traditional ML techniques in imputation accuracy, they are also significantly more effective than computationally heavier models like
Transformers. The computational efficiency of ILLWM is particularly advantageous for real-world applications where resource con-
straints, such as limited processing power or the need for real-time predictions, are critical. This efficiency makes it especially suitable
for energy consumption datasets, which often involve large-scale and dynamic data with high variability [75]. The computational
efficiency of ILLWM is particularly advantageous for real-world building applications, where constraints such as limited edge
computing capacity or the need for real-time predictions may exist. This makes it feasible for integration into cloud-based dashboards,
edge devices, or energy auditing platforms [76]. Its scalability and computational efficiency make it an ideal tool for applications in
energy monitoring, forecasting, anomaly detection and management, especially in dynamic, real-world environments where data
completeness is often a challenge [77].

4.3. Limitations

While our study demonstrated better imputation performance, some limitations must be acknowledged. First, the scope was
restricted to specific building types and regions in South Korea, which may limit the generalizability of our findings to other settings
with different energy consumption profiles [78]. Additionally, the model’s performance under MAR and MNAR conditions was not
evaluated, and the hyperparameter optimization was relatively constrained. Future research should expand scope by utilizing larger
and more diverse datasets from various global regions, assessing the model’s performance under MAR and MNAR scenarios, and apply
more advanced hyperparameter optimization techniques [79]. Furthermore, improving computational efficiency, exploring alterna-
tive ODE solvers, and testing the model’s robustness to noise are essential for its practical deployment. Integrating the ILLWM network
with other advanced imputation methods, as well as utilizing Neural Architecture Search (NAS) to optimize model architectures, could
further improve performance.
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5. Conclusions

This study introduced a novel imputation model, ILLWM, designed to address the challenge of missing data in energy consumption
datasets. By leveraging the adaptive capabilities of LNN and the temporal strength of LSTM networks, the model delivers a scalable and
efficient solution for time-series imputation in energy management. The primary objective was to enhance imputation accuracy across
various building types using MCAR missing data mechanism by weighting the contributions of LNN and LSTM models. The results
consistently showed that the ILLWM demonstrated better performance than traditional ML methods and advanced ML models. The
model achieved lower RMSE values, achieving significant RMSE reductions, especially for commercial buildings (76.9 % over LNN and
89.6 % over LSTM with 40 % missing data). Hospital buildings showed a notable improvement, with a 6.12 % reduction over LNN and
31.93 % over LSTM. The ILLWM’s adaptability to dynamic energy data allows it to maintain improved imputation accuracy across
different missing data rates. The high Pearson correlation scores further underscore the model’s capability to preserve the original data
structure, ensuring that imputed values align closely with the actual energy consumption patterns. These results are critical for ap-
plications such as load forecasting and energy demand management, where the integrity of time-series data is paramount. These results
demonstrate the potential of the ILLWM to significantly enhance data reliability, fostering more accurate energy demand forecasting
and supporting the development of sustainable energy management strategies across diverse building environments. By ensuring the
completeness and accuracy of datasets, the model contributes to improved decision-making processes in real-time energy applications.
Its computational efficiency, driven by the integrated weighting mechanism, minimizes the need for frequent retraining, making it
particularly suitable for dynamic scenarios where data updates are frequent and missing values are prevalent. This capability enables
stakeholders to optimize resource allocation, plan for future energy needs, and implement innovative strategies to achieve energy
efficiency and sustainability objectives effectively.

CRediT authorship contribution statement

Saeed Murtaza: Writing — original draft, Validation, Software, Investigation, Formal analysis, Data curation. Sarath Raj: Writing —
review & editing, Writing — original draft, Formal analysis. Geun Young Yun: Writing — review & editing, Writing — original draft,
Supervision, Methodology, Funding acquisition, Conceptualization. Duk-Joon Park: Writing — review & editing, Resources. Ji-Hye
Kim: Writing — review & editing, Resources. Gwanyong Park: Writing — review & editing, Resources. Jin Woo Moon: Writing —
review & editing, Resources.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-
2025-00554879). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIT) (No. RS-2023-00217322).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jobe.2025.113774.

Data availability
The data that has been used is confidential.

References

[1] S. Jeong, Y.M. Wi, Research on development and implementation of integrated energy management system for buildings, J. Electrical Eng. Technol. (2024),
https://doi.org/10.1007/542835-024-01870-3.

[2] B. Farhadi, J. You, D. Zheng, L. Liu, S. Wu, J. Li, et al., Machine learning for fast development of advanced energy materials, Next Mater. 1 (2023) 100025,
https://doi.org/10.1016/j.nxmate.2023.100025.

[3] S.Jang, S.-J. Shin, Deep learning-based smart meter wattage prediction analysis platform, Int. J. Adv. Smart Convergence 9 (2020) 173-178, https://doi.org/

10.7236/1JASC.2020.9.4.173.

I. Izonin, N. Kryvinska, R. Tkachenko, K. Zub, An approach towards missing data recovery within IoT smart system, Procedia Comput. Sci. 155 (2019) 11-18,

https://doi.org/10.1016/j.procs.2019.08.006. Elsevier B.V.

[5] R. Yuan, S.A. Pourmousavi, W.L. Soong, A.J. Black, J.A.R. Liisberg, J. Lemos-Vinasco, Unleashing the benefits of smart grids by overcoming the challenges
associated with low-resolution data, Cell Rep. Phys. Sci. 5 (2024), https://doi.org/10.1016/j.xcrp.2024.101830.

[6] Y. Dong, C.Y.J. Peng, Principled missing data methods for researchers, SpringerPlus 2 (2013) 1-17, https://doi.org/10.1186,/2193-1801-2-222/TABLES/3.

[4

=

15


https://doi.org/10.1016/j.jobe.2025.113774
https://doi.org/10.1007/s42835-024-01870-3
https://doi.org/10.1016/j.nxmate.2023.100025
https://doi.org/10.7236/IJASC.2020.9.4.173
https://doi.org/10.7236/IJASC.2020.9.4.173
https://doi.org/10.1016/j.procs.2019.08.006
https://doi.org/10.1016/j.xcrp.2024.101830
https://doi.org/10.1186/2193-1801-2-222/TABLES/3

S. Murtaza et al.

71
[8]
[9]

[10]
[11]

[12]

[13]
[14]

[15]
[16]
[17]
[18]

[19]
[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]

[36]
(371

[38]
[39]

[40]
[41]

[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]

[50]

Journal of Building Engineering 112 (2025) 113774

M.C. Wang, C.F. Tsai, W.C. Lin, Towards missing electric power data imputation for energy management systems, Expert Syst. Appl. 174 (2021) 114743,
https://doi.org/10.1016/J.ESWA.2021.114743.

T. Kim, W. Ko, J. Kim, Analysis and impact evaluation of missing data imputation in day-ahead PV generation forecasting, Appl. Sci. (Switzerland) 9 (2019),
https://doi.org/10.3390/APP9010204.

D.S. Bram, U. Nahum, A. Atkinson, G. Koch, M. Pfister, Evaluation of machine learning methods for covariate data imputation in pharmacometrics, CPT
Pharmacometrics Syst. Pharmacol. 11 (2022) 1638-1648, https://doi.org/10.1002/psp4.12874.

I. Mayer, A. Sportisse, J. Josse, N. Tierney, N. Vialaneix, R-miss-tastic: a unified platform for missing values methods and workflows, ArXiv Preprint (2019).
M. Wolbers, A. Noci, P. Delmar, C. Gower-Page, S. Yiu, J.W. Bartlett, Standard and reference-based conditional mean imputation, Pharm. Stat. 21 (2022),
https://doi.org/10.1002/pst.2234.

R.R. Andridge, R.J.A. Little, A review of hot deck imputation for survey non-Response, Int. Stat. Rev. 78 (2010) 40, https://doi.org/10.1111/J.1751-
5823.2010.00103.X.

M.I. Mohd Jaya, Cold Deck Missing Value Imputation with a Trust-based Selection Method of Multiple Web Donors, Universiti Putra Malaysia, 2018.

D.P. Petersen, D. Middleton, Linear interpolation, extrapolation, and prediction of random space-time fields with a limited domain of measurement, IEEE Trans.
Inf. Theor. 11 (1965) 18-30, https://doi.org/10.1109/TIT.1965.1053734.

B.R. Winck, J.M.G. Bloor, K. Klumpp, Eighteen years of upland grassland carbon flux data: reference datasets, processing, and gap-filling procedure, Sci. Data 10
(2023), https://doi.org/10.1038/s41597-023-02221-z.

E.L. Silva-Ramirez, R. Pino-Mejias, M. Lopez-Coello, M.D. Cubiles-de-la-Vega, Missing value imputation on missing completely at random data using multilayer
perceptrons, Neural Netw. 24 (2011) 121-129, https://doi.org/10.1016/j.neunet.2010.09.008.

V. Hassija, V. Chamola, A. Mahapatra, A. Singal, D. Goel, K. Huang, et al., Interpreting black-box models: a review on explainable artificial intelligence, Cognit
Comput. 16 (2024) 45-74, https://doi.org/10.1007/512559-023-10179-8.

J.H. Li, S.X. Guo, R.L. Ma, J. He, X.H. Zhang, D.S. Rui, et al., Comparison of the effects of imputation methods for missing data in predictive modelling of cohort
study datasets, BMC Med. Res. Methodol. 24 (2024), https://doi.org/10.1186/512874-024-02173-x.

F. Lalande, K. Doya, Numerical Data Imputation for Multimodal Data Sets: a Probabilistic Nearest-Neighbor Kernel Density Approach, 2023.

L.A. Wang, R. Kern, E. Yu, S. Choi, J.Q. Pan, IntelliSleepScorer, a software package with a graphic user interface for automated sleep stage scoring in mice based
on a light gradient boosting machine algorithm, Sci. Rep. 13 (2023), https://doi.org/10.1038/541598-023-31288-2.

Q. Yao, J.T. Kwok, Accelerated and inexact soft-impute for large-scale matrix and tensor completion, IEEE Trans. Knowl. Data Eng. 31 (2019) 1665-1679,
https://doi.org/10.1109/TKDE.2018.2867533.

Y. Sun, J. Li, Y. Xu, T. Zhang, X. Wang, Deep learning versus conventional methods for missing data imputation: a review and comparative study, Expert Syst.
Appl. 227 (2023), https://doi.org/10.1016/j.eswa.2023.120201.

O. Valenzuela, A. Catala, D. Anguita, I. Rojas, New advances in artificial neural networks and machine learning techniques, Neural Process. Lett. 55 (2023)
5269-5272, https://doi.org/10.1007/5s11063-023-11350-w.

F. Xiao, C. Fan, Data mining in building automation system for improving building operational performance, Energy Build. 75 (2014) 109-118, https://doi.org/
10.1016/J.ENBUILD.2014.02.005.

L. Zhang, A pattern-recognition-based ensemble data imputation framework for sensors from building energy systems, Sensors 20 (2020) 5947, https://doi.org/
10.3390/520205947, 2020;20:5947.

D. Jeong, C. Park, Y.M. Ko, Missing data imputation using mixture factor analysis for building electric load data, Appl. Energy 304 (2021) 117655, https://doi.
org/10.1016/J.APENERGY.2021.117655.

J. Ma, J.C.P. Cheng, F. Jiang, W. Chen, M. Wang, C. Zhai, A bi-directional missing data imputation scheme based on LSTM and transfer learning for building
energy data, Energy Build. 216 (2020) 109941, https://doi.org/10.1016/J.ENBUILD.2020.109941.

C. Fu, M. Quintana, Z. Nagy, C. Miller, Filling time-series gaps using image techniques: multidimensional context autoencoder approach for building energy data
imputation, Appl. Therm. Eng. 236 (2024) 121545, https://doi.org/10.1016/J.APPLTHERMALENG.2023.121545.

J. Yang, K.K. Tan, M. Santamouris, S.E. Lee, Building energy consumption raw data forecasting using data cleaning and deep recurrent neural networks,
Buildings 9 (2019) 204, https://doi.org/10.3390/BUILDINGS9090204, 2019;9:204.

A. Liguori, R. Markovic, M. Ferrando, J. Frisch, F. Causone, C. van Treeck, Augmenting energy time-series for data-efficient imputation of missing values, Appl.
Energy 334 (2023) 120701, https://doi.org/10.1016/J. APENERGY.2023.120701.

A. Liguori, M. Quintana, C. Fu, C. Miller, J. Frisch, C. van Treeck, Opening the black box: towards inherently interpretable energy data imputation models using
building physics insight, Energy Build. 310 (2024) 114071, https://doi.org/10.1016/J. ENBUILD.2024.114071.

Z. Wang, L. Wang, Y. Tan, J. Yuan, Fault detection based on Bayesian network and missing data imputation for building energy systems, Appl. Therm. Eng. 182
(2021) 116051, https://doi.org/10.1016/J. APPLTHERMALENG.2020.116051.

R. Wy, S.D. Hamshaw, L. Yang, D.W. Kincaid, R. Etheridge, A. Ghasemkhani, Data imputation for multivariate time series sensor data with large gaps of missing
data, IEEE Sens. J. 22 (2022) 10671-10683, https://doi.org/10.1109/JSEN.2022.3166643.

I.H. Sarker, Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions, SN Comput Sci. 2 (2021), https://doi.org/
10.1007/542979-021-00815-1.

F.A. Adnan, K.R. Jamaludin, W.Z.A. Wan Muhamad, S. Miskon, A review of the current publication trends on missing data imputation over three decades:
direction and future research, Neural Comput. Appl. 34 (2022) 18325-18340, https://doi.org/10.1007/500521-022-07702-7.

R.M. Hasani, M. Lechner, A. Amini, D. Rus, R. Grosu, Liquid time-constant recurrent neural networks as universal approximators, ArXiv Preprint (2018).

R. Hasani, M. Lechner, A. Amini, D. Rus, R. Grosu, Liquid time-constant networks. Proceedings of the AAAI Conference on Artificial Intelligence, Association for
the Advancement of Artificial Intelligence, 2021, pp. 7657-7666, https://doi.org/10.1609/AAAL.V3519.16936, 35.

D. Das, S. Bhattacharya, U. Pal, S. Chanda, PLSM: a Parallelized Liquid State Machine for Unintentional Action Detection, 2021.

M. Bidollahkhani, F. Atasoy, H. Abdellatef, LTC-SE: expanding the potential of liquid time-constant neural networks for scalable Al and embedded systems,
ArXiv Preprint (2023).

J.G. White, E. Southgate, J.N. Thomson, S. Brenner, The Structure of the Nervous System of the Nematode Caenorhabditis elegans, vol 314, 1986.

D.G. Albertson, J.N. Thomson, The pharynx of Caenorhabditis elegans, Philos. Trans. R. Soc. Lond. B Biol. Sci. 275 (1976) 299-325, https://doi.org/10.1098/
RSTB.1976.0085.

M. Lechner, R. Hasani, A. Amini, T.A. Henzinger, D. Rus, R. Grosu, Neural circuit policies enabling auditable autonomy, Nat. Mach. Intell. 2 (2020) 642-652,
https://doi.org/10.1038/5s42256-020-00237-3.

P. Gajjar, A. Saxena, K. Acharya, P. Shah, C. Bhatt, T.T. Nguyen, Liquidt: stock market analysis using liquid time-constant neural networks, Int. J. Inf. Technol.
16 (2024) 909-920, https://doi.org/10.1007/s41870-023-01506-1.

X. Wang, F. Zhu, C. Huang, A. Alhammadi, F. Bader, Z. Zhang, et al., Robust beamforming with gradient-based liquid neural network, IEEE Wireless Commun.
Lett. (2024) 1-5, https://doi.org/10.48550/arXiv.2405.07291.

W.A. Pawlak, M. Isik, D. Le, I.C. Dikmen, Exploring liquid neural networks on Loihi-2, ArXiv Preprint 1-8 (2024), https://doi.org/10.48550/arXiv.2407.20590.
B. Xu, N. Wang, T. Chen, M. Li, Empirical Evaluation of Rectified Activations in Convolutional Network, 2015.

C. Leo, The math behind LSTM. https://medium.com/towards-data-science/the-math-behind-lstm-9069b835289d, 2024. (Accessed 3 February 2025).

F. Landi, L. Baraldi, M. Cornia, R. Cucchiara, Working memory connections for LSTM, Neural Netw. 144 (2021), https://doi.org/10.1016/j.neunet.2021.08.030.
S. Mahjoub, L. Chrifi-Alaoui, B. Marhic, L. Delahoche, Predicting energy consumption using LSTM, multi-layer GRU and Drop-GRU neural networks, Sensors 22
(2022) 4062, https://doi.org/10.3390/522114062, 2022;22:4062.

X. Sun, J. Yin, Y. Zhao, Using the inverse of expected error variance to determine weights of individual ensemble members: application to temperature
prediction, J. Meteorological Res. 31 (2017) 502-513, https://doi.org/10.1007/513351-017-6047-0/METRICS.

16


https://doi.org/10.1016/J.ESWA.2021.114743
https://doi.org/10.3390/APP9010204
https://doi.org/10.1002/psp4.12874
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref10
https://doi.org/10.1002/pst.2234
https://doi.org/10.1111/J.1751-5823.2010.00103.X
https://doi.org/10.1111/J.1751-5823.2010.00103.X
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref13
https://doi.org/10.1109/TIT.1965.1053734
https://doi.org/10.1038/s41597-023-02221-z
https://doi.org/10.1016/j.neunet.2010.09.008
https://doi.org/10.1007/s12559-023-10179-8
https://doi.org/10.1186/s12874-024-02173-x
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref19
https://doi.org/10.1038/s41598-023-31288-2
https://doi.org/10.1109/TKDE.2018.2867533
https://doi.org/10.1016/j.eswa.2023.120201
https://doi.org/10.1007/s11063-023-11350-w
https://doi.org/10.1016/J.ENBUILD.2014.02.005
https://doi.org/10.1016/J.ENBUILD.2014.02.005
https://doi.org/10.3390/S20205947
https://doi.org/10.3390/S20205947
https://doi.org/10.1016/J.APENERGY.2021.117655
https://doi.org/10.1016/J.APENERGY.2021.117655
https://doi.org/10.1016/J.ENBUILD.2020.109941
https://doi.org/10.1016/J.APPLTHERMALENG.2023.121545
https://doi.org/10.3390/BUILDINGS9090204
https://doi.org/10.1016/J.APENERGY.2023.120701
https://doi.org/10.1016/J.ENBUILD.2024.114071
https://doi.org/10.1016/J.APPLTHERMALENG.2020.116051
https://doi.org/10.1109/JSEN.2022.3166643
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s00521-022-07702-7
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref36
https://doi.org/10.1609/AAAI.V35I9.16936
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref38
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref39
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref39
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref40
https://doi.org/10.1098/RSTB.1976.0085
https://doi.org/10.1098/RSTB.1976.0085
https://doi.org/10.1038/s42256-020-00237-3
https://doi.org/10.1007/s41870-023-01506-1
https://doi.org/10.48550/arXiv.2405.07291
https://doi.org/10.48550/arXiv.2407.20590
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref46
https://medium.com/towards-data-science/the-math-behind-lstm-9069b835289d
https://doi.org/10.1016/j.neunet.2021.08.030
https://doi.org/10.3390/S22114062
https://doi.org/10.1007/S13351-017-6047-0/METRICS

S. Murtaza et al.

[51]
[52]
[53]
[54]
[55]
[56]

[57]
[58]

[59]
[60]
[61]
[62]

[63]
[64]

[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77]

[78]
[79]

Journal of Building Engineering 112 (2025) 113774

Dhevi AT. Sree, Imputing missing values using inverse distance weighted interpolation for time series data. 6th International Conference on Advanced
Computing, ICOAC, 2014, pp. 255-259, https://doi.org/10.1109/ICOAC.2014.7229721, 2015.

T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning Data Mining, Inference, and Prediction, 2009.

D.B. Rubin, Inference and missing data, Biometrika 63 (1976) 581, https://doi.org/10.2307/2335739.

R.J.A. Little, D.B. Rubin, Statistical Analysis with Missing Data, wiley, 2002, https://doi.org/10.1002/9781119013563.

C. Li, Little’s test of missing completely at random, STATA J. 13 (2013) 795-809.

M.S. Santos, R.C. Pereira, A.F. Costa, J.P. Soares, J. Santos, P.H. Abreu, Generating synthetic missing data: a review by missing mechanism, IEEE Access 7 (2019)
11651-11667, https://doi.org/10.1109/ACCESS.2019.2891360.

Z. Ghahramani, M.I. Jordan, Supervised learning from incomplete data via an EM approach, Adv. Neural Inf. Process. Syst. 6 (NIPS 1993) (1993) 120-127.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury Google, G. Chanan, et al., Pytorch: an imperative style, high-performance deep learning library, Adv. Neural
Inf. Process. Syst. (2019).

D.P. Kingma, J.L. Ba, Adam: a method for stochastic optimization, ArXiv Preprint (2014).

J. Cohen, Statistical Power Analysis for the Behavioral Sciences, 1988. New York.

G. Chen, S. Lu, S. Zhou, Z. Tian, M.K. Kim, J. Liu, et al., A systematic review of building energy consumption prediction: from perspectives of load classification,
data-driven frameworks, and future directions, Appl. Sci. 15 (2025) 3086, https://doi.org/10.3390/APP15063086, 2025;15:3086.

S. Bhanja, S. Metia, A. Das, A smart city air quality data imputation method using markov weights-based fuzzy transfer learning, IETE J. Res. 69 (2023)
5755-5763, https://doi.org/10.1080/03772063.2023.2186500.

F. Lalande, K. Doya, Numerical Data Imputation for Multimodal Data Sets: a Probabilistic Nearest-Neighbor Kernel Density Approach, 2023.

L.A. Wang, R. Kern, E. Yu, S. Choi, J.Q. Pan, IntelliSleepScorer, a software package with a graphic user interface for automated sleep stage scoring in mice based
on a light gradient boosting machine algorithm, Sci. Rep. 13 (2023), https://doi.org/10.1038/541598-023-31288-2.

C. Miller, B. Picchetti, C. Fu, J. Pantelic, Limitations of machine learning for building energy prediction: ASHRAE great energy predictor III kaggle competition
error analysis, Sci. Technol. Built Environ. 28 (2022) 610-627, https://doi.org/10.1080/23744731.2022.2067466.

H. Dhungana, F. Bellotti, R. Berta, A. De Gloria, Performance comparison of imputation methods in building energy data sets, Lecture Notes Electrical Eng. 738
(2021) 144-151, https://doi.org/10.1007/978-3-030-66729-0_17.

J. Ghanim, M. Issa, M. Awad, An asymmetric loss with anomaly detection LSTM framework for power consumption prediction. MELECON 2022 - IEEE
Mediterranean Electrotechnical Conference, Proceedings, 2022, pp. 819-824, https://doi.org/10.1109/MELECON53508.2022.9842895.

R. Prater, T. Hanne, R. Dornberger, Generalized performance of LSTM in time-series forecasting, Appl. Artif. Intell. 38 (2024), https://doi.org/10.1080/
08839514.2024.2377510/ASSET/CF45FB12-E584-477E-B839-88EE95A7B350/ASSETS/GRAPHIC/UAAI_A_2377510_F0003_B.GIF.

G. Antonesi, T. Cioara, I. Anghel, I. Papias, V. Michalakopoulos, E. Sarmas, Hybrid transformer model with liquid neural networks and learnable encodings for
buildings’ energy forecasting, Energy and Al 20 (2025) 100489, https://doi.org/10.1016/J. EGYAL2025.100489.

F.M. Salem, R.N.N. Gated, The long short-term memory (LSTM) RNN, Recurrent Neural Network. (2022) 71-82, https://doi.org/10.1007/978-3-030-89929-5_
4.

X. Xu, L. Xia, Q. Zhang, S. Wu, M. Wu, H. Liu, The ability of different imputation methods for missing values in mental measurement questionnaires, BMC Med.
Res. Methodol. 20 (2020) 1-9, https://doi.org/10.1186/512874-020-00932-0/TABLES/3.

Y. Jeong, E. Yang, J.H. Ryu, I. Park, M. Kang, AnomalyBERT: self-supervised transformer for time series anomaly detection using data degradation scheme,
ArXiv Preprint (2023).

A.J. Saroj, A. Guin, M. Hunter, Deep LSTM recurrent neural networks for arterial traffic volume data imputation, J. Big Data Analytics Transport. 3 (2021),
https://doi.org/10.1007/542421-021-00043-2.

N.S. Dasappa, G.K. Kumar, N. Somu, Multi-sensor data fusion framework for energy optimization in smart homes, Renew. Sustain. Energy Rev. 193 (2024)
114235, https://doi.org/10.1016/J.RSER.2023.114235.

S. Bourhnane, M.R. Abid, R. Lghoul, K. Zine-Dine, N. Elkamoun, D. Benhaddou, Machine learning for energy consumption prediction and scheduling in smart
buildings, SN Appl. Sci. 2 (2020) 1-10, https://doi.org/10.1007/542452-020-2024-9/FIGURES/11.

N.M. Quy, L.A. Ngoc, N.T. Ban, N Van Hau, V.K. Quy, Edge computing for real-time internet of things applications: future internet revolution, Wirel. Pers.
Commun. 132 (2023) 1423-1452, https://doi.org/10.1007/511277-023-10669-W/FIGURES/2.

B. Falcao, A. Annuk, M. Marinho, Employing machine learning for advanced gap imputation in solar power generation databases. https://doi.org/10.1038/
s41598-024-74342-3, 2024.

R. Gomila, C.S. Clark, Missing data in experiments: challenges and solutions, Psychol. Methods 27 (2022) 143-155, https://doi.org/10.1037/met0000361.
R.C. Pereira, P.H. Abreu, P.P. Rodrigues, M.A.T. Figueiredo, Imputation of data missing not at random: artificial generation and benchmark analysis, Expert
Syst. Appl. 249 (2024), https://doi.org/10.1016/j.eswa.2024.123654.

17


https://doi.org/10.1109/ICOAC.2014.7229721
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref52
https://doi.org/10.2307/2335739
https://doi.org/10.1002/9781119013563
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref55
https://doi.org/10.1109/ACCESS.2019.2891360
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref57
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref58
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref58
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref59
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref60
https://doi.org/10.3390/APP15063086
https://doi.org/10.1080/03772063.2023.2186500
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref63
https://doi.org/10.1038/s41598-023-31288-2
https://doi.org/10.1080/23744731.2022.2067466
https://doi.org/10.1007/978-3-030-66729-0_17
https://doi.org/10.1109/MELECON53508.2022.9842895
https://doi.org/10.1080/08839514.2024.2377510/ASSET/CF45FB12-E584-477E-B839-88EE95A7B350/ASSETS/GRAPHIC/UAAI_A_2377510_F0003_B.GIF
https://doi.org/10.1080/08839514.2024.2377510/ASSET/CF45FB12-E584-477E-B839-88EE95A7B350/ASSETS/GRAPHIC/UAAI_A_2377510_F0003_B.GIF
https://doi.org/10.1016/J.EGYAI.2025.100489
https://doi.org/10.1007/978-3-030-89929-5_4
https://doi.org/10.1007/978-3-030-89929-5_4
https://doi.org/10.1186/S12874-020-00932-0/TABLES/3
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref72
http://refhub.elsevier.com/S2352-7102(25)02011-X/sref72
https://doi.org/10.1007/s42421-021-00043-2
https://doi.org/10.1016/J.RSER.2023.114235
https://doi.org/10.1007/S42452-020-2024-9/FIGURES/11
https://doi.org/10.1007/S11277-023-10669-W/FIGURES/2
https://doi.org/10.1038/s41598-024-74342-3
https://doi.org/10.1038/s41598-024-74342-3
https://doi.org/10.1037/met0000361
https://doi.org/10.1016/j.eswa.2024.123654

	Adaptive neural temporal hybridization for missing data imputation in building energy use datasets: An integrated LNN-LSTM  ...
	1 Introduction
	2 Methodology
	2.1 Proposed framework
	2.1.1 LNN
	2.1.2 LSTM
	2.1.3 ILLWM

	2.2 Data collection and pre-processing
	2.3 Introducing missing data
	2.4 Benchmark models
	2.5 Model setup
	2.5.1 Hyperparameter optimization

	2.6 Implementing ILLWM
	2.7 Model evaluation

	3 Results
	3.1 Performance of the existing models
	3.2 Integrated LNN-LSTM weighted model
	3.3 Improved imputation accuracy across building types

	4 Discussion
	4.1 Improvement in imputation with integrated LNN-LSTM weighted model
	4.2 Implications of the integrated LNN-LSTM weighted model
	4.3 Limitations

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	Data availability
	References


