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A B S T R A C T

In contemporary Conventional ventilation control methods primarily rely on environmental measurements taken 
indoors but often overlook occupant-specific factors. This study presents an optimal ventilation control algorithm 
based on a real-time indoor CO2 concentration prediction model designed to enhance IAQ and energy efficiency. 
This model incorporates real-time occupant data, highlighting the considerable influence of occupant-related 
variables on the indoor CO2 levels. To this end, three deep learning architectures—deep neural networks, long 
short-term memory (LSTM), and gated recurrent units—were evaluated, with the LSTM model exhibiting su
perior accuracy and robustness. Using this model, a predictive ventilation control algorithm was developed to 
proactively regulate airflow and maintain CO2 concentrations below the recommended threshold of 1,000 ppm. 
The effectiveness of the proposed control strategy was validated using mockup experiments and living lab-based 
simulations. The results show that integrating real-time occupant data considerably enhances indoor comfort 
than rule-based ventilation control. Furthermore, optimal ventilation control resulted in a considerable decrease 
in energy consumption by approximately 24.74%, particularly in large-scale environments. These findings 
highlight the potential of the proposed method as a robust solution for next-generation indoor environmental 
management systems and intelligent control in smart buildings.

1. Introduction

As modern lifestyles have shifted predominantly indoors, maintain
ing optimal indoor air quality (IAQ) has become crucial for occupant 
health and comfort. With people spending approximately 90% of their 
time in enclosed spaces, effective IAQ management is crucial for health 
protection and building sustainability [1]. In response, numerous 
countries have strengthened their IAQ standards and implemented 
policy measures to ensure compliance [2]. These policies protect occu
pant health and support sustainable building operation. Key contribu
tors to IAQ degradation include carbon dioxide (CO2) buildup from 
occupant respiration, volatile organic compounds emitted from building 
materials, and particulate matter from external sources [3]. Prolonged 
exposure to these pollutants can result in health issues such as fatigue, 
headache, and decreased concentration. Additionally, CO2 

concentrations exceeding certain levels can induce dizziness and 
drowsiness, thereby affecting occupant health [4].

Indoor CO2 concentrations are affected not only by environmental 
factors such as the ventilation rate and outdoor air quality, but also by 
personal factors, including the body mass index (BMI), metabolic rate 
(MET), and gender [5]. Studies show that a 10% increase in body weight 
results in an average 8% increase in CO2 emissions, indicating a corre
lation between a higher BMI and increased respiration and CO2 output 
[6]. Park et al [7]. observed that CO2 emissions increase by approxi
mately 3-8 times in high MET activities such as walking (3.5 MET) and 
running (8.0 MET) than sitting. Owing to greater lung capacity and 
muscle mass, men exhale more CO2 than women [8]. Hence, incorpo
rating occupant-specific information is crucial to control personalized 
ventilation systems.

Conventional ventilation system control methods—on/off, demand- 
controlled ventilation (DCV), and proportional–integral–derivative 
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(PID) control—are widely used to regulate indoor airflow and maintain 
acceptable air quality levels. On/off control is simple and cost-effective 
but can result in energy waste owing to rapid CO2 concentrations fluc
tuations. DCV monitors IAQ data in real time and adjusts the ventilation 
rates based on demand, thereby offering improved energy efficiency. 
PID control provides stable regulation by minimizing errors through 
real-time feedback. However, these conventional control methods rely 
primarily on environmental variables measured indoors and fail to 
adequately incorporate occupant-specific information.

To address the aforementioned limitation, approaches such as model 
predictive control (MPC) and artificial intelligence (AI) have been 
introduced. MPC incorporates occupant information and both indoor 
and outdoor environmental data to predict CO2 concentrations and 
proactively adjust ventilation rates, thereby enhancing the air quality 
and energy efficiency [9,10]. However, it is computationally demanding 
owing to the Consequently, AI-based smart ventilation control tech
nologies have emerged, leveraging real-time data collection and analysis 
to deliver optimized ventilation strategies [11].

The occupant-centric control (OCC) concept, which utilizes real-time 
occupant data to optimize the building energy consumption and indoor 
environmental quality, has attracted considerable attention [12]. 
Numerous studies have applied the OCC methods that adjust ventilation 
rates based on occupant CO2 emissions, occupancy status, and density 
[13–15]. Choi et al [16]. installed video-based occupant sensors in a 
living lab and used a convolutional neural network to estimate occupant 
numbers. By controlling an energy recovery ventilation (ERV) system 
based on this data, they achieved approximately 40% energy savings 
than PID control. Kim et al [17]. developed a double deep Q-network 
algorithm that identifies simple occupancy states (work, sleep, and 
absence) using a multivariate logistic regression model. This algorithm 
simultaneously controls cooling, ventilation, and humidification sys
tems, thereby resulting in energy savings ranging from 6.3-21% [17]. 
Mutis et al [18]. proposed a heating, ventilation, and air-conditioning 
(HVAC) control model that combines YOLO v3 with a multistream 
deep learning network (Conv2D, long short-term memory (LSTM), and 
Conv3D) for occupant activity detection and prediction, thereby 
achieving energy savings and improved occupant comfort. These studies 
highlight the importance of incorporating different types of occupant 
information (occupant count, presence/absence, MET, gender, and BMI) 
for accurate CO2 control and IAQ enhancement.

Existing studies primarily focus on detecting the current state and 
activity of occupants, without fully considering how these activities 
affect indoor CO2 concentration levels [19–21]. Consequently, 

ventilation systems generally operate reactively, acting only after the 
IAQ thresholds are exceeded, making difficult to maintain comfortable 
indoor environments. To address this issue, further research is required 
to predict changes in indoor CO2 concentrations by incorporating 
occupant information, thereby enabling the proactive control of the 
ventilation system to enhance IAQ and comfort.

This study aimed to develop an intelligent model for real-time CO2 
concentration prediction based on occupant information and propose an 
optimized ventilation control strategy. It seeks to comprehensively 
analyze the impact of the proposed method on IAQ, comfort, and energy 
consumption using field applications. By integrating real-time CO2 
prediction with ventilation control, the study addresses the limitations 
of conventional reactive control methods and demonstrates the effec
tiveness of a proactive control model for maintaining IAQ and comfort.

Fig. 1 shows the process of developing the prediction model and 
optimized ventilation algorithm (algorithm-opt), including a perfor
mance evaluation. In Step 1, data collection and preprocessing were 
conducted to gather indoor and outdoor environmental data, occupant 
information (number, MET, gender, and BMI), and ventilation system 
data. Preprocessing improved data quality, thereby enabling the 
development of the training dataset and analysis of correlations among 
key variables. Step 2 involved developing the prediction model using 
different deep learning techniques such as deep neural networks 
(DNNs), gated recurrent units (GRUs), and LSTM networks to optimize 
the CO2 concentration prediction model based on the collected data. In 
Step 3, the optimal control algorithm was developed to calculate optimal 
ventilation rates using real-time predicted data, thereby enabling pro
active ventilation control. Step 4 comprised a performance evaluation 
using mockup and living lab tests wherein the impact of the algorithm 
on IAQ improvement and energy consumption were analyzed. The 
mock-up test analyzed CO2 concentrations and energy consumption in a 
single-user environment, while the living lab test evaluated the scal
ability and stability of the algorithm in a multi-user scenario using 
computer simulations.

Numerous studies have applied OCC strategies utilizing data such as 
occupant count, presence, and activity state. However, these approaches 
rely primarily on detecting the current state and reactively operating the 
ventilation system once the IAQ thresholds are exceeded. Reactive sys
tems often result in delayed responses, thereby resulting in temporary 
drops in the IAQ and reduced indoor air comfort when CO2 levels sur
pass the acceptable limits.

While there has been increasing interest in real-time AI-based 
ventilation control, existing studies have largely overlooked the 

Nomenclature

ṁ opt Optimal supply airflow rate
ṁ SA Supply airflow rate
ṁ RA Return airflow rate
CO2 pred Predicted indoor CO2 concentration
CO2 limit Predefined CO2 concentration threshold (generally 1,000 

ppm)
C Performance load factor coefficients used in energy 

consumption calculations
FF Airflow ratio (actual airflow to maximum possible airflow)

Abbreviation
IAQ Indoor air quality
CO₂ Carbon dioxide [ppm]
LSTM Long short-term memory
GRU Gated recurrent unit
DNN Deep neural network
MET Metabolic rate [met or W/m2]

PID Proportional–integral–derivative
DCV Demand-controlled ventilation
MPC Model predictive control
ERV Energy recovery ventilation
HVAC Heating, ventilation, and air conditioning
BMI Body mass index [kg/m2]
AI Artificial intelligence
M3/H Cubic meters per hour [m3/h]
MAE Mean absolute error
MAPE Mean absolute percentage error
CvRMSE Coefficient of variation of the root mean square error
R² Coefficient of determination
FPS Frames per second
SA Supply airflow [m3/h]
RA Return airflow [m3/h]
EHP Electric heat pump
PLF Performance load factor
FF Airflow ratio
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dynamic integration of occupant-specific characteristics such as MET, 
BMI, and gender into CO2 prediction models to enable proactive control 
strategies. The majority of prior studies have focused on reactive ap
proaches, with limited investigation into personalized ventilation sys
tems that incorporate real-time occupant behavior and physiological 
attributes.

This study addresses the aforementioned gap by proposing a method 
that optimizes ventilation control by integrating occupant-specific in
formation (MET, BMI, and gender) into real-time CO₂ prediction models. 
By enabling the system to predict and manage IAQ degradation before it 
occurs, the approach supports consistent indoor air quality, enhances 
comfort, and optimizes energy efficiency. Unlike conventional reactive 
systems, this proactive model provides real-time, predictive IAQ man
agement, thereby providing a novel ventilation control strategy that 
distinguishes it from previous studies.

The remainder of this paper is organized as follows. Section 2 out
lines the methodology for developing the indoor CO2 concentration 
prediction model. First, input and output data are selected using cor
relation analysis, followed by the development of the prediction model 
using deep learning algorithms (DNN, LSTM, and GRU). It describes the 
proposed optimized ventilation control algorithm (algorithm-opt) and 
rule-based control method (algorithm-rule) used for comparison.

Section 3 provides an overview of the mock-up and office (living lab) 
environments used to compare the control performance of the optimized 
ventilation algorithm (algorithm-opt) and rule-based control method 
(algorithm-rule). It outlines the participant details for the mock-up 
experiment and living lab computer simulation.

Section 4 presents the results of the ventilation control system per
formance evaluation based on experiments conducted in the mock-up 
and office (living lab) environment. The experiments measure CO2 
concentrations relative to occupant activity levels, comparing the per
formance of the two control methods (algorithm-rule and algorithm- 
opt). Herein, the findings are analyzed and suggestions for future 
research are proposed.

Section 5 summarizes Sections 2 to 4, evaluates the ventilation 

control system performance using the experimental results and com
parisons, analyzes the differences between the two control methods, and 
discusses potential future research directions. Based on the findings, it 
offers recommendations for advancing IAQ management and optimizing 
control systems.

2. Development of optimal control method

2.1. Indoor CO2 prediction model

Indoor CO2 concentration exhibits dynamic, nonlinear characteris
tics that are influenced by numerous factors, requiring deep learning- 
based models capable of capturing this complexity. In this study, pre
diction models were developed using DNN [22], LSTM [23,24], and 
GRU [25,26]. While DNNs offer high learning capacities owing to their 
multilayered architecture, they are prone to overfitting and extended 
training times. To address this, regularization techniques and dropout 
were employed. LSTM networks effectively capture the temporal de
pendencies in historical data, although their complex structures result in 
longer training times. Conversely, GRUs offer high computational effi
ciency suitable for real-time data processing, offering a performance 
comparable to LSTM while addressing its limitations [27].

Appropriate input variable selection is crucial for achieving robust 
prediction performance. In this study, candidate input variables were 
identified based on environmental and personal factors affecting indoor 
CO2 concentration. Pearson correlation analysis was utilized to select 
the most influential variables. The dataset for this analysis was collected 
using preliminary experiments conducted in a mock-up environment 
from February 2-19, 2024, resulting in 66,632 data entries. The data 
were obtained using environmental sensors and a vision-based occu
pancy estimation system installed in the mock-up environment, which 
served as the basis for the statistical analysis used in input selection.

The initial set of candidate variables included indoor temperature, 
outdoor temperature, indoor humidity, outdoor CO2 concentration, 
supply airflow rate (SA), return airflow rate (RA), number of occupants, 
MET, BMI, and gender. As shown in Fig. 2 (a) and (b), the Pearson 
correlation coefficient ranges from –1 to 1, with values near –1 indi
cating a strong negative correlation and those near 1 indicating a strong 
positive correlation. Generally, coefficients above 0.8 indicate a strong 
correlation, between 0.4 and 0.8 a moderate correlation, and below 0.4 
a weak correlation [28,29]. The analysis revealed that the number of 
occupants, MET, BMI, and gender had correlation coefficients exceeding 
0.5, indicating considerable influence on indoor CO2 concentration. 
Although SA and RA exhibited lower coefficients (~0.35), they were 
retained as input features owing to their indirect impact on air circu
lation and CO2 levels.

In addition to the Pearson correlation analysis, Spearman rank cor
relation was conducted to identify monotonic nonlinear relationships 
between the input variables. The Spearman coefficient complements the 
Pearson correlation by capturing not only linear relationships but also 
order-based nonlinear trends [30]. Indoor CO2 exhibited positive 
Spearman correlations above 0.4 with the number of occupants, MET, 
SA, and RA, indicating that the combined influence of occupancy and 
activity levels on indoor CO2 concentration may follow nonlinear 
patterns.

The strong correlation between BMI and gender further indicates 
that the MET estimation method, that relies on physical characteristics 
of participants, considerably influences the results. This finding supports 
the reliability of the relationship between the input variables and target 
prediction, particularly in the context of posture-based MET estimation.

In the experimental system, the SA comprised only outdoor air (OA), 
with no mixing with RA, while the damper operated in binary mode 
(either 0% or 100%). The return air was completely exhausted outdoors 
and did not re-enter the supply stream, meaning no mixed air (MA) was 
formed. The final set of input variables comprised seven features: the 
indoor CO2 concentration, SA, RA, number of occupants, MET, BMI, and 

Fig. 1. Process flow of the methodology.
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gender. The output variable was defined as the indoor CO2 concentra
tion 5 min ahead, which corresponds with the system control cycle. 
Using preliminary experiments, an appropriate control cycle was 
determined based on the airflow levels. Considering the volume and 
internal diffusion characteristics of the mock-up space, when the control 
cycle was set to more than 10 min, the system repeatedly failed to 
control the CO2 concentration until it exceeded the indoor air quality 
threshold of 1,000 ppm. Consequently, a 5-min cycle was adopted as the 
minimum control unit to ensure stable indoor air quality management.

The number of occupants and MET values were automatically 
extracted using a vision-based sensor that analyzed real-time image data 
to estimate activity levels. For MET, the most frequent value within each 
5-min interval was selected from measurements captured at a frame rate 
of 2 FPS [31]. Conversely, BMI and gender were manually input based 
on data collected from participants during preliminary experiments.

Outdoor CO2 concentration exhibited negligible correlation and was 
excluded from the final input set. Although outdoor CO2 is a key variable 
in diluting indoor CO2 concentrations—particularly in spaces with high 
infiltration even without proper supply airflow—this study selected 
input features based on statistical significance using correlation analysis. 
Hence, only variables with a stronger quantitative influence were 
retained for model development.

The collected data were preprocessed for model training by replacing 
outliers—caused by communication instability—with the average of the 
preceding and following data points. No missing values were observed. 
Given a 5-min control cycle, the raw data were averaged over 5-min 
intervals, thereby resulting in 3,336 training data entries. The dataset 
was then denoised and structured to meet the input format requirements 
of the DNN, LSTM, and GRU models.

All input variables were normalized to a 0-1 range using min–max 
scaling. The dataset was then divided into training, validation, and test 
sets in an 8:1:1 ratio, which corresponds with 2,670, 333, and 333 en
tries, respectively. To maintain the temporal structure of the time-series 
data, a time-based sequential split was applied instead of random 
partitioning.

Before training the DNN, LSTM, and GRU models using the pre
processed data, a hyperparameter-tuning process was conducted to 
ensure optimal performance. Key hyperparameters, such as the number 
of neurons and hidden layers, dropout rate, and activation functions, are 
crucial for determining the structure and learning efficiency of a model 
[32]. As model performance can vary considerably based on 

hyperparameter combinations, selecting an optimal set using an effi
cient search strategy is crucial [33]. Common hyperparameter optimi
zation techniques include grid search, random search, heuristic search, 
and Bayesian optimization [34]. Herein, Bayesian optimization was 
adopted owing to its search efficiency and suitability under time con
straints [35].

Bayesian optimization was conducted using the Bayesian Optimiza
tion module from the Keras Tuner library. The search space for the 
hypermodel was defined as follows: number of neurons ranging from 32 
to 512, number of hidden layers from 0 to 5, dropout rate between 0 and 
0.5, and activation functions such as ReLU, sigmoid, and tanh. The 
optimization process used the mean squared error (MSE) as the loss 
function and the Adam optimizer for training. The training configura
tion included 100 epochs, 15 repeated training runs, with early stopping 
triggered after five consecutive iterations without improvement. A fixed 
window size was used for the LSTM model.

Owing to the Bayesian optimization, the optimal configuration for 
the DNN model included three hidden layers, a dropout rate of 0.2, and 
the ReLU activation function. For the GRU model, regardless of the 
window size (2-4), the optimal configuration comprised two hidden 
layers, a dropout rate of 0.1, and the Tanh activation function. The LSTM 
model exhibited a similar configuration to the GRU. Further details are 
provided in Section 4.1.

2.2. Algorithm for ventilation system control

This section describes the development methodology of algorithm- 
opt, which optimally controls the ventilation system using the pre
dicted indoor CO2 concentration. Additionally, a rule-based ventilation 
control algorithm (algorithm-rule) was used as a baseline for the 
comparative evaluation of IAQ and energy performance in real-world 
environments.

The algorithm-opt integrates the CO2 concentration prediction 
model described in Section 2.1 to enable ventilation system control. The 
flow of the algorithm is illustrated in Fig. 3. This approach is designed to 
maintain indoor CO2 concentrations below the target threshold of 1000 
ppm, in accordance with the acceptable indoor air quality limits rec
ommended by ASHRAE Standard 62.1 [36]. To achieve this, the control 
variable (predicted indoor CO2 concentration (CO2 pred i(t))) was esti
mated. Based on this prediction, the manipulated variable (optimal 

Fig. 2. (a) Pearson and (b) Spearman correlations of the input variables.
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supply airflow rate (ṁopt)) was determined. 

Step 1 involved retrieving real-time stored data from the database. 
The acquired data include the seven input variables identified in 
Section 2.1: indoor CO2 concentration (CO2 indoor(t)), number of oc
cupants, MET, supply and return airflow rates (ṁSA and ṁRA), BMI, 
and gender. The indoor CO2 concentration was represented as a 5- 
min average, while the number of occupants and MET were repre
sented as the most frequent values within the same 5-min interval. 
The SA and RA values corresponded with the control settings of the 
ventilation system at the time of data acquisition. BMI and gender 
were fixed based on the registered occupant profiles.
Step 2 involved preprocessing the input data. First, occupant pres
ence was assessed. If no occupants were detected, the ventilation 
system remained inactive. When occupancy was confirmed, input 
data were generated for each of the five ventilation modes (modes 0- 
4). Mode 0 represents the system-off state, while Modes 1-4 corre
spond with increasing levels of ventilation. The actual airflow rates 
were 8 m3/h for Mode 1, 30 m3/h for Mode 2, 60 m3/h for Mode 3, 
and 90 m3/h for Mode 4, which is the maximum output of the 
installed ventilation system. These values were determined based on 
the technical specifications and prior experimental calibration of the 
system. The ventilation levels do not increase in linear increments 
(either linear or 25% steps), but rather reflect practical operational 
thresholds. To ensure compatibility with the prediction model, all 
values were normalized to a 0-1 range using min–max scaling .
Step 3 involved predicting the CO2 concentration for each airflow 
mode. The normalized input data was input into the CO2 prediction 
model to estimate the indoor CO2 concentration at time (t) for each 

selected ventilation mode (i). The predicted values are denoted as 
CO2 pred i(t). The model outputs a set of CO2 predictions for all five 
ventilation modes, including the off state, as expressed in Eq. (1)

Outputdata =
[
CO2pred0(t),CO2pred1(t),CO2pred2(t),CO2pred3(t),CO2pred4(t)

]

(1) 

In Step 4, the prediction errors were calculated by comparing each 
predicted value with the CO2 concentration limit of 1,000 ppm 
(CO2 limit), as recommended by the WHO to ensure occupant comfort. 
The error for each airflow mode was computed using Eq. (2) as 
follows: 

Errori = CO2 limit − CO2 pred i(t) (2) 

where Error represents the error value, CO2 pred i (t) the predicted in
door CO2 concentration [ppm] at the next control time step (t+1), and 
CO2 limit the predefined threshold set to 1,000 ppm. The subscript i 
represents the ventilation mode, where i = [0,1,2,3,4], which corre
sponds to the off state and four increasing ventilation levels, 
respectively. 

In Step 5, the control signal was selected and transmitted based on 
the computed errors. If none of the error values were negative, all the 
predicted CO2 levels were considered to be below the threshold, 
while the ventilation system was turned off (i=0). If all the error 
values were negative, all predicted CO2 concentrations were deemed 
to have exceeded the threshold, and the system switched to the 

Fig. 3. Optimal ventilation control algorithm.
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maximum airflow setting (ṁmax, i = 4) for rapid air quality 
improvement. If one or more (but not all) error values were negative, 
the system selected the ventilation mode with the error closest to 
zero to minimize the energy consumption while maintaining air 
quality. The final control signal was then transmitted to the venti
lation system, while the selected control settings were saved to a 
database.

Fig. 4 illustrates the algorithm-rule, which serves as the baseline 
control strategy in this study. This approach activates the ventilation 
system at predefined airflow levels whenever the current indoor CO2 
concentration exceeds a specified threshold. The threshold was set 
below 1,000 ppm, in accordance with the Basic Classification of Indoor 
Air Quality outlined in ASHRAE Standard 62.1 [36]. According to the 
standard, the difference between the indoor and outdoor CO2 concen
trations indicates the IAQ level: a difference of 400 ppm or less indicates 
high IAQ, 400-600 ppm medium IAQ, 600-1,000 ppm moderate IAQ, 
and above 1,000 ppm low IAQ. Based on these classifications, specific 
airflow levels were assigned to each CO2 concentration range.

In this study, the mock-up and living lab environments utilized 
ventilation systems capable of delivering four levels of airflow (Modes 1- 
4), although the actual airflow rates varied based on the configuration of 
the system. The living lab, located at ’C’ University in Dongjak-gu, 
Seoul, South Korea, covers an area of 62.83 m2 with a volume of 
169.64 m3. The thermal transmittance (U-value) is 3.322 W/m2⋅K for 
the roof and 0.463 W/m2⋅K for the walls and floor, while the infiltration 
rate is 180 m3/h. The facility is occupied by 9 individuals from 10:00 to 
20:00 on weekdays, with no occupancy on weekends or holidays. The 
ventilation system used is an energy recovery ventilation system. This 
environment enables data collection on indoor and outdoor conditions, 
ventilation control, and occupant information. Detailed specifications 
for the airflow settings of each system are provided in Sections 3.1 and 
3.2. As illustrated in Fig. 4, the algorithm-rule logic activates Mode 2 
when CO2 concentrations are between 1,000 and 1,200 ppm, Mode 3 
when they are between 1,200 and 1,400 ppm, and Mode 4 when they are 
above 1,400 ppm. If the CO2 concentration falls below 1,000 ppm, the 
system automatically turns off. Preliminary experiments indicated that 
the airflow in Mode 1 was insufficient to considerably reduce the indoor 
CO2 concentration. Consequently, Mode 1 was excluded from the 
implemented control logic in the mockup and living lab settings.

3. Experimental configuration

3.1. Mock-up

To evaluate the performance of the data-driven indoor CO2 

concentration prediction model and integrated optimal ventilation 
control, a mock-up environment was developed for experimental vali
dation. Table 1 presents an overview and configuration of the mockup, 
while Fig. 5 shows the photographs of the experimental test setup. The 
mock-up was installed on the second floor of University “C,” located in 
Heukseok-dong, Dongjak-gu, Seoul, South Korea. The internal space 
measured 2.6 m (D) × 1.35 m (W) × 2.4 m (H). To facilitate occupant 
monitoring, the enclosure was constructed using transparent antistatic 
panels, allowing visibility from all sides except the floor. Although the 
mock-up was situated indoors, the windows and doors were kept open to 
minimize environmental differences between the test space and its 
surroundings, as enclosed buffer spaces (server and control zones) could 
affect internal CO2 levels.

As presented in Table 1, the mockup enabled the real-time acquisi
tion of environmental variables, occupant data, and ventilation system 
operation status. The setup included different sensors and data acqui
sition devices such as IoT-based environmental sensors (AW-1008-K-P), 
image-based sensors, a Raspberry Pi 4, an Arduino Uno microcontroller 
unit (MCU), and a dedicated data server. Three AW-1008-K-P sensors 
were positioned at a height of 1.2 m on the interior wall, a height used in 
previous studies to monitor CO2 concentrations [37–39]. This height 
was selected as it approximates the average breathing zone of seated and 
standing occupants, corresponding with ASHRAE Standard 55-2017 
[40], which specifies representative measurement heights at 0.6, 1.1, 
and 1.7 m for environmental variables. Preliminary measurements at 
0.6, 1.2, and 1.7 m confirmed that 1.2 m adequately represents the 
average indoor CO2 concentration in this environment. One 
image-based sensor was installed inside the mockup and another outside 
to detect occupant presence and activity. An image of the occupant ac
tivity detection experiment is shown in Fig. 5(b). All sensor data were 
transmitted to the database via the Arduino Uno MCU.

The ventilation system used in the mockup, as shown in Fig. 5(a), 
was custom-designed to fit the internal space illustrated in Fig. 6. To 
implement the control modes (off, outdoor air intake, and internal cir
culation), four dampers ((1)-1, (2)-2, (3)-3, (4)-4) and two fans for 
supply and exhaust ((2) supply fan and (3) exhaust fan) were installed, 
each controlled individually. The supply and exhaust fans (BFM17051B) 
installed at positions (2) and (3) were 24V DC fans measuring 170 mm 
(D) × 170 mm (W) × 51 mm (H), capable of generating a maximum 
airflow of 377.4 M3/H at a static pressure of 13.54 mmH2O. A high- 
performance filter was placed in front of the supply fan to minimize 
outdoor fine dust intake.

The damper operation based on the system control mode was as 
follows: in off mode, all dampers ((1)-1 and (1)-4) were closed. In out
door air intake mode, dampers (1)-1 and (1)-2 were open, while 
dampers (1)-3 and (1)-4 remained closed. In internal circulation mode, 

Fig. 4. Rule-based ventilation control algorithm.
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dampers (1)-1 and (1)-2 were closed, while dampers (1)-3 and (1)-4 
were open.

The experiments conducted with actual participants in the mockup 
comprised two main parts: 1) training data collection for the prediction 
model and 2) performance evaluation of the control algorithm. These 
experiments were conducted in February and March 2024. Participant 
details are presented in Table 2. Ten adult male and female participants, 
with BMIs ranging from 18.5-25 kg/m2 were selected. They performed 
three activities in the mockup: sitting (1.0 MET), standing (1.2 MET), 
and walking (1.7 MET). Of the 10 participants, 8 (Subjects A–H) 
participated in the training data acquisition phase for the prediction 

model.
The CO2 control performance of the ventilation algorithm was tested 

based on activity levels using 2 participants of different genders: Subject 
I (male) and Subject J (female). During the experiment, the activity 
levels were categorized as sitting (1.0 MET), standing (1.2 MET), and 
walking (1.7 MET). Both algorithm-rule and algorithm-opt were applied 
to evaluate their effectiveness. The experiment was conducted in two 
phases: the first 40 min utilized the algorithm-rule, followed by 40 min 
of optimal ventilation control, with each activity case lasting 80 min. A 
ventilation period of approximately 10 min was applied between each 
case.

Table 1 
Mock-up overview.

Information Details

Plan

Location ‘C’ University, Heukseok-dong, Dongjak-gu, Seoul, South Korea
Area and volume 3.51 m2 and 8.42 m3, respectively
Envelope Floor –Medium density fiber board 

Wall, roof –Uninterrupted acryl
Occupants 1 person
Ventilation system Variable air volume system 

Mode 1: 8 M3/H and Mode 2: 30 M3/H 
Mode 3: 60 M3/H and Mode 4: 90 M3/H

Acquisition data - CO2 concentration [ppm] 
- Ventilation flowrate [M3/H] 
- Number of occupants [person] 
- Occupant metabolic rate [MET] 
- BMI [kg/m2] 
- Gender [0,1,2]

Fig. 5. (a) Mock-up test setup and (b) MET estimation.
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As shown in Fig. 5(b), MET values were calculated using images 
captured by video sensors, with joint data extracted via OpenPose. The 
key joints were identified in the images, and based on their positions, the 
MET values for the different activities (sitting, standing, and walking) 
were computed. OpenPose provided the joint positions, which were then 
processed to calculate the corresponding MET values for each activity.

3.2. Living lab

To verify whether the developed optimal ventilation control can 
maintain IAQ in different environments, a simulation evaluation was 
conducted in a larger, real-world office facility (living lab) beyond the 
mock-up setup. The simulation used baseline data acquired from the 
actual conditions of the living lab, thereby enabling the evaluation of 
indoor CO2 levels and ventilation energy consumption under different 
control methods.

An overview of the living lab is presented in Table 3. Located on the 
first floor of University “C,” the office accommodates 9 occupants. The 
living lab is equipped with an ERV system and an electric heat pump 
(EHP) for heating and cooling. The ventilation system can be adjusted 
from a low airflow of 200 M3/H to a high of 1,000 M3/H, with two units 
positioned near the windows for outdoor air intake. Three environ
mental sensors were installed at a height of 1.2 m to collect indoor data, 
while a pyranometer was installed outdoors to monitor the indoor and 
outdoor CO2 concentrations, which were recorded in the database at 15- 
s intervals. Occupant count and MET data were collected using image 
sensors at 20-30 s intervals.

Simulations were conducted using Design Builder 7.0.2.003 and 
EnergyPlus V9.4.0. The building model was developed in Design 
Builder, while an HVAC system was configured using EnergyPlus. The 
occupant schedule reflected the actual living lab timetable. The outdoor 
CO2 concentration was set at 421.6 ppm, representing the global 
average for January 2024, according to CO2 Earth. The simulation 
spanned one week and accounted for daily occupancy variations, 

including classes, meetings, extended hours, and remote work, which 
corresponds to the actual living lab conditions.

MET values for the simulation were calculated using a similar 
method applied in the mock-up experiments. OpenPose analyzed images 
captured by video sensors to determine joint positions, which were then 
used to classify activity levels: sitting (1.0 MET), standing (1.2 MET), 
and walking (1.7 MET). For each activity, the most frequent MET value 
over a 5-min interval was selected. During office hours, sitting (1.0 MET) 
was the predominant activity, and this was reflected in the simulation to 
represent the typical occupant activity.

Fig. 7. In a living lab environment, data were collected to validate the 
reliability and accuracy of the EnergyPlus simulation model against 
actual experiments, as shown in Fig. 8. From March 11-17, indoor and 
outdoor CO2 concentration data were collected (Fig. 8(a)) and used to 
calibrate the simulation model [42,43]. During calibration, the venti
lation system operated from 10:00 to 20:00 on weekdays, while the 
calibration performance was evaluated using three metrics: mean ab
solute percentage error (MAPE), coefficient of variation of root mean 
square error (CvRMSE), and coefficient of determination (R2) [44,45].

Throughout the experimental period, the number of occupants var
ied daily owing to external activities, vacations, and remote work. This 
occupancy information was incorporated into the simulation model. A 
comparison between the simulation results and actual data is presented 
in the indoor CO2 concentration plot in Fig. 8(a). The simulation 
demonstrated excellent accuracy in predicting indoor CO2 concentra
tions, with a MAPE, CvRMSE, and R² of 6.01%, 7.53%, and 0.9717, 
respectively.

From March 18-24, weekday occupancy schedule data were 
collected over one week to use in the experiment. As shown in Fig. 8(b), 
occupants were considered between 9:00 and 19:00, with the average 
number of occupants per time period being approximately 5.4 on Days 1 
to 4. Day 3 recorded the highest number of occupants at 6.9, while Day 5 
had the lowest at 4.3. Simulation-based optimal ventilation system 
control and performance evaluations were performed using the acquired 
data.

4. Results analysis and discussion

4.1. Performance evaluation of indoor CO2 prediction model

Test data excluded from the training process were employed to 
evaluate the prediction performance. Table 4 presents the optimal 
hyperparameters and corresponding performance metrics for each 
model. While all three models share a similar number of input (eight) 
and output (one) neurons, they differ in the configuration of hidden 
neurons and hyperparameter settings. The evaluation was conducted 
using four metrics: mean absolute error (MAE), MAPE, CvRMSE, and R².

The DNN model comprised three hidden layers with 512, 128, and 
176 neurons. A learning rate of 0.001 was applied, while ReLU was used 
as the activation function. This model achieved an MAE, CvRMSE, and 

Fig. 6. Mock-up ventilation system.

Table 2 
Participant details.

ID Gender Age 
(years)

BMI 
(kg/m2)

Participation 
Period

Purpose of experiment

A Male 32 22.89 02/12 Training data collection 
for prediction model

B Male 28 18.81 02/13, 15 ​
C Male 26 24.06 02/01, 02 ​
D Male 24 22.6 02/08 ​
E Female 28 18.26 02/14, 16 ​
F Female 25 18.1 02/18, 19 ​
G Female 28 19.18 02/03, 12 ​
H Female 28 19.04 02/06, 07 ​
I Male 33 22.31 03/13, 18, 

19
Control algorithm 
evaluation

J Female 25 20.06 3/17, 20, 24 ​
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R² of 46.22 ppm, 14.40%, and 0.8242, respectively.
In the GRU model, the performance varied with the window size, 

with the best result obtained using a window size of 2 and two hidden 
layers comprising 384 and 512 neurons. The model employed a learning 
rate of 0.001 and Tanh activation function. This configuration yielded 
an MAE, CvRMSE, and R² of 32.97 ppm, 21.49%, and 0.6083, 
respectively.

The LSTM model demonstrated sensitivity to the window size, with 
an optimal performance at a window size of 2. This model included two 
hidden layers with 32 and 352 neurons, while Tanh was used as the 
activation function with a learning rate of 0.001. The LSTM model 

achieved the highest accuracy with an MAE, CvRMSE, and R² of 6.08 
ppm, 4.75%, and 0.9809, respectively.

Overall, the LSTM outperformed the DNN and GRU models across all 
evaluation metrics owing to its capacity to effectively capture long-term 
dependencies inherent in time-series data. Hence, the LSTM model with 
a window size of 2 was selected as the prediction component for the 
proposed algorithm-opt.

As a preliminary study, this study focused on model simplicity and 
interpretability. To establish a clear baseline, a comparison was made 
using fundamental model architectures. Future studies will include more 
advanced architectures—attention-based models and CNN-LSTM 

Table 3 
Living lab overview.

Information Details

Plan

Location ‘C’ University, Dongjak-gu, Seoul, South Koreas
Area and volume 62.83 m2 and 169.64 m3, respectively
Thermal transmittance (U-value) Roof: 3.322 W/m2⋅k 

Wall, Floor: 0.463 W/ m2⋅k
Infiltration 180 M3/H
Occupants schedule 9 persons, 10:00-20:00, no occupants on weekends and holidays
Ventilation system Energy recovery ventilation 

Mode 1: 200 M3/H and Mode 2: 300 M3/H 
Mode 3: 500 M3/H and Mode 4: 1,000 M3/H

Acquisition data - CO2 concentration [ppm] 
- Ventilation flowrate [M3/H] 
- Number of occupants [person] 
- Occupant metabolic rate [MET] 
- BMI [kg/m2] 
- Gender [0,1,2]

Fig. 7. Living-lab setup.
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networks—to further enhance prediction performance. GRU was 
included in the analysis owing to its faster training speed and lower 
computational costs compared to LSTM, making it more suitable for 
environments with Its simpler architecture also translates to reduced 
training time and computational cost the potential application in real- 
time ventilation control systems, GRU was evaluated to assess its 
feasibility and effectiveness in practical deployment scenarios [46–48].

4.2. Comparison of indoor CO2 comfort ratio

To assess the effectiveness of the optimal ventilation control strategy, 
a two-phase experiment was conducted in the mockup and living lab 
settings. The evaluation criterion was the proportion of time during 
which IAQ remained within the comfort range, defined as the period 
when the indoor CO2 concentration did not exceed 1,000 ppm. This 
percentage was calculated as the ratio of the duration during which CO2 
levels were maintained below 1,000 ppm to the total duration of the 
control period.

In the mock-up experiment, the effect of each control algorithm on 
the indoor CO2 concentration was analyzed based on the occupant 

activity levels, as shown in Fig. 9. For each activity, the proportion of 
time during which the CO2 concentration remained below the threshold 
of 1,000 ppm was quantified as the indoor air comfort ratio, as illus
trated in Fig. 10. Fig. 9(a), (c), and (e) show the results of applying 
algorithm-rule under sitting, standing, and walking conditions, respec
tively, while Fig. 9(b), (d), and (f) show those for similar activities using 
the proposed algorithm-opt. Each plot shows the experimental results 
for Subjects I (male) and J (female). The data represents the actual CO2 
concentration measured in the controlled environment, including the 
control mode of the ventilation system. For algorithm-opt, the predicted 
CO2 concentration, denoted as CO2 pred i(t), is also presented, where i 
represents the mode number and t the time in minutes. The predictions 
are made 5 min ahead. The predicted CO2 values shown in the plots 
indicate the estimated concentration 5 min ahead, which corresponds 
with the optimal airflow mode determined by the algorithm described in 
Section 2.2.

The results for sitting (1.0 MET) are shown in Fig. 9(a) and 9(b). 
Under algorithm-rule, indoor CO2 concentrations exceeded 1,000 ppm, 
triggering control activation at the next scheduled intervals (at 15 min 
for Subject I and 20 for Subject J), both at Mode 2. As regards Subject I, 

Fig. 8. Data acquisition in the living lab: (a) data for the simulation model calibration and (b) occupant schedule during the experiment period.

Table 4 
Prediction accuracy.

Model Window size Structure of hidden layers Learning rate Activation function MAE (ppm) CvRMSE (%) R2

DNN - 512-128-176 0.001 ReLU 46.22 14.40 0.8242
GRU 2 384-512 0.001 Tanh 32.97 21.49 0.6083
​ 3 320-512 0.001 Tanh 33.45 21.58 0.6051
​ 4 256-512 0.001 Tanh 38.03 22.27 0.5793
LSTM 2 32-352 0.001 Tanh 6.08 4.75 0.9809
​ 3 32-384 0.001 Tanh 17.78 8.61 0.9372
​ 4 32-224 0.001 Tanh 25.70 12.72 0.8627
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CO2 concentration exceeded 1,200 ppm at 30 min, prompting a switch 
to Mode 3. As shown in Fig. 10, the indoor air comfort ratios for Subjects 
I and J were 32.5% and 46.25%, respectively. Conversely, algorithm-opt 
continuously predicted CO2 levels to proactively adjust the airflow and 

maintain concentrations below 1,000 ppm. At the start of the experi
ment, both subjects exhibited low predicted CO2 values, while the 
ventilation system was turned off. For Subject I, Mode 2 was activated at 
10 min when the predicted CO2 concentration was CO2 pred 2(t=5) = 985 

Fig. 9. Mock-up experiment results.

Fig. 10. Indoor comfort ratio analysis based on mock-up experiments.
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ppm, while for Subject J, control started at 15 min with CO2 pred 2(t=5) =

998 ppm. Throughout the experiment, CO2 concentrations for both 
subjects remained below 1,000 ppm, thereby resulting in indoor air 
comfort ratios of 100% (Fig. 10).

As regards standing (1.2 MET), using the algorithm-rule (Fig. 9(c)) 
resulted in both subjects exhibiting CO2 concentrations exceeding 1,000 
ppm at 15 min, with ventilation operated in Modes 2 and 3 thereafter. 
However, the average exceedance period was 23 min. The indoor air 
comfort ratios for Subjects I and J were 40% and 47.5%, respectively. 

Under algorithm-opt (Fig. 9(d)), Subject I triggered Mode 2 operation at 
5 min with a predicted value of CO2 pred 2(t=5) = 922 ppm, followed by 
Mode 4 at 10 min with CO2 pred 4(t=5) = 944 ppm. The average CO2 
concentration was 862 ppm, marking the lowest across all the experi
mental conditions. Subject J activated Mode 2 at 10 min and Mode 4 at 
15 min, alternating between Modes 2 and 3 to maintain CO2 concen
trations below 1,000 ppm. No threshold exceedance occurred during the 
control period for either subjects, thereby resulting in an indoor air 
comfort ratio of 100%.

Fig. 11. Ventilation control performance in the living lab.
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Regarding walking (1.7 MET), algorithm-rule (Fig. 9(e)) resulted in 
CO2 concentrations above 1,000 ppm within the first 10 min for both 
subjects. Despite subsequent operation in Mode 3 or higher, the con
centrations remained between 1,100 and 1,200 ppm, peaking above 
1,400 ppm. The average CO2 levels were 1,327 and 1,258 ppm for 
Subjects I and J, respectively, thereby resulting in indoor air comfort 
ratios of 8.75% and 23.75%, respectively. Under optimal control (Fig. 9
(f)), Subjects I and J had a predicted value of CO2 pred 4(t=5) = 890 ppm 
and CO2 pred 4(t=5) = 982 ppm at 5 min, respectively, thereby triggering 
the immediate operation of Mode 4, which was maintained until the end 
of the experiment. The resulting indoor air comfort ratios improved to 
13.95 and 36.65% for Subjects I and J, respectively (Fig. 10). Although 
CO2 levels exceeded 1,000 ppm for the majority of the time, the average 
concentrations under optimal control were approximately 1,005 ppm 
compared to 1,365 ppm under algorithm-rule—representing a 26% 
decrease and demonstrating enhanced IAQ.

In summary, the proposed optimal ventilation control system out
performed the conventional rule-based control method in maintaining 
indoor CO2 comfort, particularly under low MET conditions such as 
sitting (1.0 MET) and standing (1.2 MET), wherein considerable im
provements in the indoor air comfort ratio were observed. However, 
maintaining CO2 levels below 1,000 ppm during walking (1.7 MET) 
proved more challenging owing to the limited airflow capacity of the 
ventilation system relative to the increased CO2 generation from higher 
physical activity. To address this, improvements such as integrating 
supplemental air-handling systems and advancing adaptive control logic 
capable of relearning occupant activity patterns and IAQ dynamics are 
required.

Across all the experiments, Subject J (female) consistently emitted 
less CO2 than Subject I (male), thereby suggesting a gender-based dif
ference in CO2 generation likely attributable to physiological factors 
(differences in respiratory volume and metabolic rate) [41]. Generally, 
males have higher metabolic rates and larger body sizes, which 
contribute to increased respiratory CO2 output. Under algorithm-rule 
(Fig. 9), Subject I maintained higher CO2 levels than Subject J. Under 
optimal control, the CO2 concentrations were regulated to similar levels 
for the subjects across all activity levels, except for walking. This sug
gests that the developed method effectively predicts CO2 levels and 
adjusts ventilation regardless of gender, thereby maintaining indoor CO2 
concentrations within the comfort range for different occupants.

The second performance evaluation was conducted using simula
tions in a living lab environment, wherein algorithm-opt and -rule 
control strategies were applied from 10:00-20:00. The analysis exam
ined CO2 concentration variations and energy consumption patterns. 
The results over 5 d are shown in Fig. 11, with the left plot showing the 
results under algorithm-rule and right those under algorithm-opt.

Under algorithm-rule, CO2 concentrations rapidly increased in the 

morning as occupant numbers increased, exceeding 1,000 ppm before 
the system activated. This resulted in extended periods of CO2 levels, 
with the reactive nature of the system leading to slower ventilation re
sponses after the threshold was exceeded. Conversely, the optimal 
ventilation control system proactively activated the ventilation system 5 
min ahead whenever the predicted CO2 concentration was projected to 
exceed 1,000 ppm, thereby preventing the concentration from surpass
ing the threshold.

The system activation and occupancy patterns were analyzed daily. 
On Day 5 (Fig. 11(i) and 11(j)), the CO2 concentrations were maintained 
below 1,000 ppm, with notably fewer system activations. This can be 
attributed to the reduced number of occupants compared to those on 
other days (Fig. 8(b)), which slowed the CO2 accumulation rate. On Day 
3 (Fig. 11(e) and 11(f)), when occupants remained until 20:00, CO2 
levels remained high until later in the day, thereby resulting in an 
extended system operation.

Fig. 12 shows the proportion of time during which the CO2 concen
trations remained below 1,000 ppm across all occupancy periods. For 
algorithm-rule, the time exceeding the CO2 threshold increased with an 
increase in the number of occupants. On Day 3, with the highest average 
occupancy of 6.9 people, the indoor comfort ratio was 64%, while on 
Day 5, with the lowest occupancy, it reached 95%. These variations 
highlight the differences in performance even under a similar control 
method. However, algorithm-opt successfully maintained CO2 concen
trations below 1,000 ppm throughout the experimental period, 
demonstrating its ability to predict and respond to CO2 fluctuations 
driven by occupancy changes. This confirms that algorithm-opt, which 
incorporates occupancy variations, provides superior air quality control 
than the conventional method.

4.3. Energy consumption analysis

This section presents the investigation of the impact of the optimal 
ventilation control on the ventilation energy consumption. Energy 
consumption was calculated based on the power consumption of the 
ventilation system fan, with the fan operating at 24 V and 5 A, thereby 
resulting in a maximum output power of 14.4 W. To calculate the energy 
consumption at different airflow rates, the performance load factor 
(PLF) from EnergyPlus was applied, as expressed in Eq. (3). The con
stant, linear, and higher-order coefficients (2nd–4th) were derived from 
the inlet vane damper coefficients provided by EnergyPlus. 

PLF = C1 + C2⋅FF + C3⋅FF2 + C4⋅FF3 + C5⋅FF4 (3) 

where PLF represents the energy consumption coefficient and FF the 
airflow ratio. The constants C1, C2, C3, C4, and C5 represent empirical 
curve coefficients in a polynomial equation used to approximate the part 
load performance (PLF) of HVAC equipment as a function of the flow 

Fig. 12. Indoor comfort ratio analysis for the living lab.
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fraction (FF). These coefficients are obtained from manufacturer data or 
EnergyPlus simulation parameters. For this experiment, the EnergyPlus 
settings were used to calculate the required values.

Using the calculation method, the energy consumptions of 
algorithm-rule and -opt were compared. Fig. 13 shows the energy con
sumption and ventilation system operation time for each control method 
in the mock-up and living lab environments. In the mock-up environ
ment, the energy consumption of the ventilation system for each airflow 
mode was calculated as follows: Mode 1 at 11.17 W, Mode 2 at 13 W, 
Mode 3 at 17.85 W, and Mode 4 at 28.51 W. Based on the mock-up 
results shown in Fig. 13(a), Subject I consumed between 3.65 and 
11.61 Wh in algorithm-rule, while the optimal ventilation control 
resulted in energy consumptions ranging from 7.52-13.38 Wh. 
Depending on the activity, algorithm-opt consumed more energy (be
tween 15 and 182%). Subject J exhibited a similar trend, with 
algorithm-opt consuming more energy (between 43 and 90%) than al
gorithm-rule.

The greatest difference in energy consumption between the control 
methods was observed during the standing activity. For Subject I, the 
optimal ventilation control resulted in an approximately 75% longer 
system operation time than algorithm-rule (20-35 min), while Subject J 
exhibited a 33% increase (20-30 min). During sitting and walking, 
optimal ventilation control performed proactive control, thereby 

predicting CO2 levels one time-step ahead. However, during standing, 
the system overestimated the CO2 increase rate, thereby resulting in 
excessive control two to three time-steps ahead. Consequently, the 
ventilation system operated more frequently than algorithm-rule. This 
overestimation is attributed to limited training data for standing, 
thereby preventing the model from accurately capturing the CO2 
changes during this activity. Compared to sitting and walking, standing 
appears to require extensive data to improve the CO2 prediction accu
racy. Hence, future studies must increase the training data for standing 
and enhance the model performance.

The ventilation system operation time analysis, represented by a line 
graph in Fig. 13(a), revealed that algorithm-opt resulted in longer 
operation times than algorithm-rule. For both subjects, the operation 
time increased with an increase in the activity levels, attributable to the 
optimal control ability of the system to adjust ventilation in response to 
elevated CO2 concentration rates during intense activity. Further, the 
difference in the operation time between the control methods varied by 
gender. Even under similar activity conditions, Subject I (male) required 
longer system operation times than Subject J (female). This indicates 
that algorithm-opt, using the LSTM network, incorporates historical 
data patterns to predict CO2 levels and adjust ventilation based on the 
gender-based differences in CO2 emissions.

In a living lab environment, the energy consumption of the 

Fig. 13. Energy consumption results: (a) Mock-up and (b) living lab.
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ventilation system fan was measured under similar conditions to those in 
the mock-up setting. The energy consumption for each airflow mode was 
calculated as 58, 76, 137, and 395 W for Modes 1-4, respectively, as 
shown in Fig. 13(b). Throughout the experiment, both control methods 
operated at Mode 2 airflow, as shown in Fig. 11. Over the 5-d testing 
period, the total energy consumption was 1,203.33 Wh for algorithm- 
rule and 905.67 Wh for optimal ventilation control, indicating energy 
savings of approximately 24.74% using the proposed method.

Considerable differences were observed on Days 3 and 5. On Day 3, 
owing to high occupancy density, algorithm-rule recorded the highest 
energy at 361 Wh, while optimal control reduced this to 278.67 Wh by 
accurately predicting the CO2 fluctuations. On Day 5, with lower oc
cupancy and stable outdoor CO2 concentrations, the optimal control 
further reduced consumption to 240.67 Wh, compared to 335.67 Wh 
under algorithm-rule. These differences were primarily owing to the 
shorter system operation durations under optimal control conditions. 
From Days 1-5, the operation time for algorithm-rule ranged 40-185 
min, while it ranged 30-140 min for optimal control. This reduction in 
the operating time is attributed to the effectiveness of algorithm-opt in 
predicting CO2 concentration changes and minimizing unnecessary 
ventilation.

Consequently, the optimal ventilation control strategy effectively 
reduced energy consumption while maintaining stable IAQ. The 
differing energy consumption trends between the mock-up experiment 
and living lab simulation are attributed to variations in the ventilation 
system capacity and indoor spatial scale. The mock-up, designed for a 
single occupant, had a limited ventilation capacity and more confined 
space, thereby making CO2 levels more volatile and requiring frequent 
changes in the operation mode, which increased energy consumption. 
Conversely, the living lab featured a larger system capacity and spatial 
volume, thereby resulting in an average CO2 fluctuation per occupant 
and reduced operational demands. These findings suggest that the pro
posed control method is more energy-efficient in larger environments 
with sufficient ventilation capacity. Hence, future implementations 
should be optimized based on the space scale and system performance.

4.4. Discussion

This study developed a real-time CO2 concentration prediction 
model that incorporates occupant information and applied an optimized 
ventilation control system based on the predicted values. While previous 
studies have proposed ventilation control systems that consider occu
pant behavior and environmental variables, the majority rely on reac
tive methods that only activate ventilation after IAQ exceeds the 
threshold. Such methods are limited by delayed responses once the IAQ 
is breached [12,13]. This study proposes a predictive ventilation control 
system that anticipates IAQ deterioration and proactively adjusts the 
system in real-time, thereby enabling more effective control than con
ventional methods.

Previous studies focused on identifying the current occupancy state 
and activity level to control ventilation systems. Choi et al [16]. used 
video-based occupant sensors to monitor occupancy and regulate an 
ERV system, thereby achieving up to 40% energy savings. However, 
such studies relied on reactive control, thereby activating the ventilation 
system only after CO2 concentrations exceeded predefined thresholds. 
This study utilizes real-time CO2 concentration predictions to proac
tively adjust the ventilation system, thereby improving the IAQ and 
energy efficiency simultaneously. Kim et al [17]. developed a multi-deep 
Q-network algorithm that identified basic occupancy states (work, sleep, 
and absence) to control cooling, ventilation, and humidification sys
tems, thereby achieving energy savings between 6.3 and 21%. While 
both approaches utilize occupant data to optimize ventilation control, 
this study advances this concept by integrating personalized occupant 
information (MET, BMI, and gender) into the real-time CO₂ concentra
tion prediction model. This integration enables a predictive control 
strategy that not only anticipates air quality deterioration but also 

balances IAQ and energy consumption. Further, by factoring in diverse 
physiological traits, the proposed method offers a more refined and 
responsive control system than previous studies

The analysis of the results further confirms the effectiveness of the 
proposed system in optimizing ventilation control. The optimized 
ventilation control algorithm (algorithm-opt) successfully reduced en
ergy consumption by 24.74% while maintaining stable indoor CO2 
concentrations in a mock-up environment. This highlights the potential 
of dynamically adjusting ventilation operations to simultaneously 
optimize IAQ and energy consumption. Unlike the rule-based control 
method, which activates the ventilation system only after CO2 levels 
exceed predefined thresholds, algorithm-opt predicts CO₂ concentra
tions and proactively adjusts the system in real-time, effectively saving 
energy and improving IAQ.

The multi-occupant living lab simulation demonstrated that 
algorithm-opt reduced the ventilation system operation time and 
managed energy consumption efficiently. Although algorithm-opt 
consumed more energy in the mock-up environment, it maintained 
stable CO2 concentrations and optimized the ventilation system. In the 
living lab environment, accurate predictions reduced the system oper
ation time, thereby resulting in a 24.74% decrease in energy consump
tion. These results highlight the practicality and efficiency of the 
prediction-based ventilation control strategy, which simultaneously 
addresses both IAQ and energy consumption.

Future research will focus on expanding and diversifying the training 
dataset to improve the accuracy of CO2 concentration predictions based 
on occupant behavior and activity levels. Additionally, integrating 
adaptive learning techniques for real-time model retraining will ensure 
system responsiveness to changing indoor conditions, thereby enabling 
accurate IAQ management. While this study treated outdoor CO2 con
centrations as relatively insignificant, outdoor CO2 may be crucial in 
diluting indoor CO2 concentrations in other environments. Future 
research should develop models that consider changes in outdoor CO2 
concentrations to improve prediction accuracy and overall air quality 
control. Furthermore, advanced model architectures (Attention-based 
models, CNN-LSTM, ResNet + LSTM, and other hybrid models) will be 
examined to further improve prediction performance and effectively 
address the complexities of real-time ventilation control.

5. Conclusions

This study developed a personalized, real-time CO2 concentration 
prediction model and implemented an optimized ventilation control 
system to improve IAQ. The proposed system offers a prediction-based 
ventilation control approach that anticipates and resolves issues asso
ciated with reactive control methods.

The LSTM model exhibited superior prediction performance than 
other models, achieving the lowest MAE of 6.08 ppm, CvRMSE) of 
4.75%, and R² value of 0.9809. This demonstrates a considerably higher 
prediction accuracy than the DNN and GRU models.

The optimized ventilation control system (algorithm-opt) effectively 
maintained stable indoor CO2 concentrations and enhanced IAQ. In the 
mock-up environment, algorithm-opt successfully kept CO2 concentra
tions below the 1,000-ppm threshold, thereby improving IAQ. Although 
CO2 concentrations occasionally exceeded 1,000 ppm during walking 
activities, algorithm-opt considerably reduced CO2 levels than the rule- 
based control system, thereby demonstrating the effectiveness of the 
prediction-based control approach.

The optimized control system (algorithm-opt) demonstrated notable 
improvements in energy efficiency. In the mock-up environment, 
algorithm-opt achieved a 24.74% reduction in energy consumption 
while maintaining stable indoor CO2 concentrations. However, the 
mock-up experiment revealed that algorithm-opt consumed more en
ergy than the rule-based control system, which can be attributed to the 
increased fan usage required to improve IAQ.
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assessment for indoor aerosols, Sci. Total Environ. 668 (2019) 13–24, https://doi. 
org/10.1016/j.scitotenv.2019.02.398.

[5] A. Persily, L. de Jonge, Carbon dioxide generation rates for building occupants, 
Indoor Air 27 (5) (2017) 868–879, https://doi.org/10.1111/ina.12383.

[6] S. García, M. Monserrat-Mesquida, S. Mas-Fontao, E. Cuadrado-Soto, M. Ortiz- 
Ramos, P. Matía-Martín, L. Daimiel, C. Vázquez, J.A. Tur, C. Bouzas, Body 
composition and CO2 dietary emissions, Front. Public Health 12 (2024) 1432109, 
https://doi.org/10.3389/fpubh.2024.1432109.

[7] W. Ji, M. Luo, B. Cao, Y. Zhu, Y. Geng, B. Lin, A new method to study human 
metabolic rate changes and thermal comfort in physical exercise by CO2 
measurement in an airtight chamber, Energy Build 177 (2018) 402–412, https:// 
doi.org/10.1016/j.enbuild.2018.08.018.

[8] C.A. Harms, S. Rosenkranz, Sex differences in pulmonary function during exercise, 
Med. Sci. Sports Exerc. 40 (4) (2008) 664–668, https://doi.org/10.1249/ 
mss.0b013e3181621325.
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